An Introduction to Smart Grids and Microgrids

Marc Matsuura

Sr. Smart Grid Program Manager

Grid System Technologies Advanced Research Team

Hawaii Natural Energy Institute School of Ocean & Earth Science & Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, Hawaii 96822

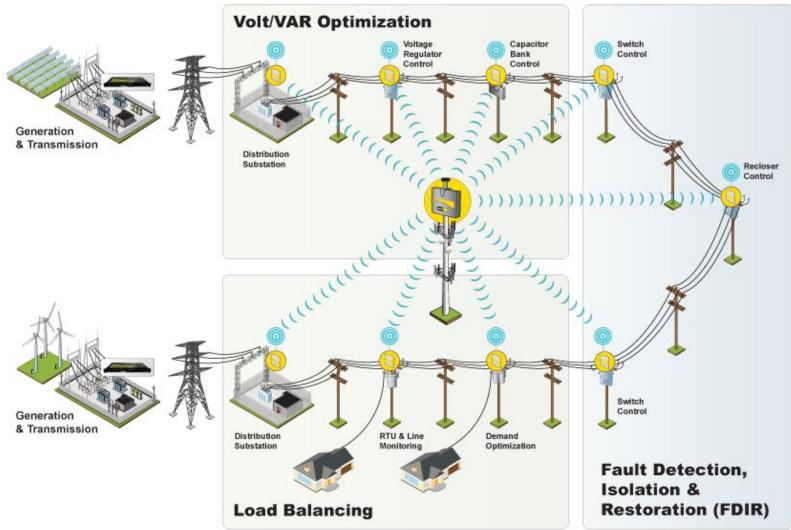
APEC

Expert Group on New and Renewable Energy Technologies

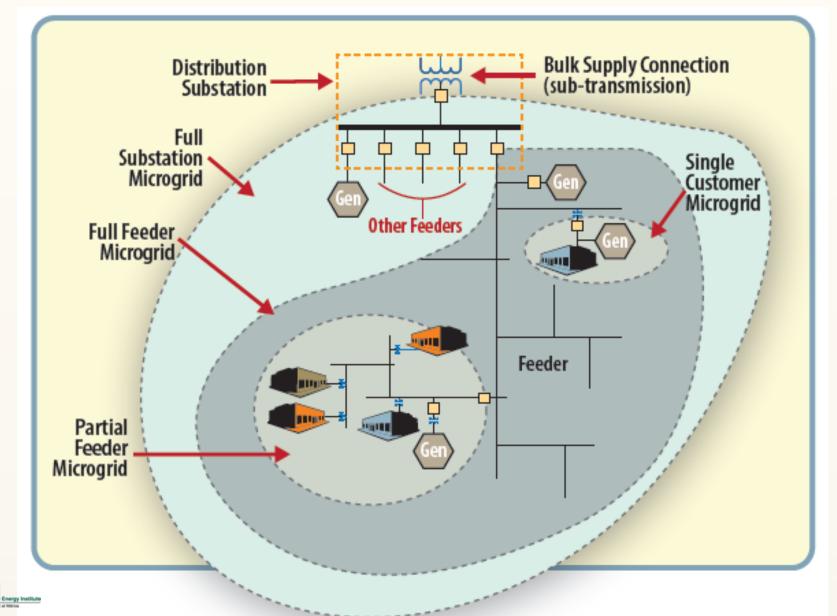
50th Meeting

Honolulu, HI 22 March, 2018

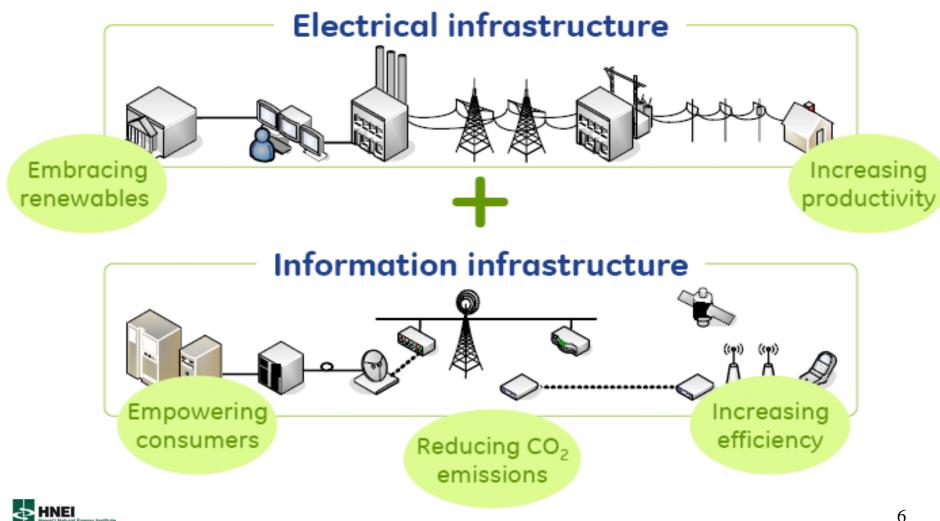
What is a smart grid?



Is it a smart meter?



Is it intelligent control of the power distribution system?



Is it intelligent microgrids?

INE

EPRI Smart Grid Secure Integration of Two Infrastructures

Sources: (1) UtilityPoint, by Ethan Cohen 7/18/0 (2) EPRI® Intelligrid

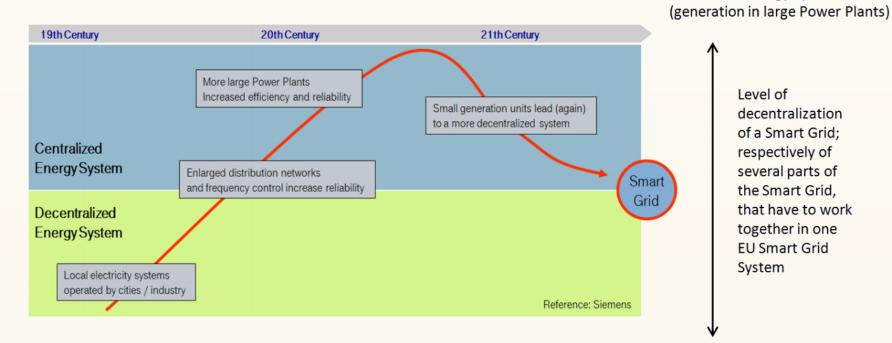
US DoE Smart Grid Characteristics

- 1. Enables active participation by consumers
- 2. Accommodates all generation and storage options
- 3. Enables new products, services and markets
- 4. Provides power quality for the digital economy
- 5. Optimizes assets & operates efficiently
- Anticipates and responds to system disturbances (self-heals)
- 7. Operates resiliently against attack and natural disaster

So, what is a smart grid?

It can be one or all of these, and more ...

It should be <u>tailored</u> based on a <u>balance</u> of desired benefits (i.e., your issues to be solved and opportunities to realize) vs. cost to implement



Why do we need a smarter grid?

The Power Grid is Changing

Decentralized extremity:

Decentralized Energy System (generation in a very big number of distributed small and midsize generation units, all units are interconnected; large Power Plants did not exist)

<u>Centralized extremity:</u> Centralized Energy System

Typical SG Concepts

- Customer
 - More detailed energy usage information (AMI)
 - Faster connect/disconnect (incl. Prepay) (AMI)
 - Reduced outage times / timely outage information (AMI & DA)
 - Time of Use pricing options (AMI)
- Utility
 - Greater visibility and control (AMI & DA)
 - Remote and automated switching and restoration (AMI, DA, & FDIR)
 - Asset Management (AMI & DA)
 - More efficient use of manpower and the grid (AMI & DA)
 - Non-technical loss (energy theft) recovery (AMI)

Advanced SG Concepts

- Customer
 - Demand Response (DR) with two way communication and real-time aggregation
 - Smart PV Inverters
 - Customer Storage Systems
 - Smart EV Charging/Discharging
- Utility
 - Aggregated Distributed Energy Resource (DER) Control (VPP)
 - Volt/VAr Optimization / CVR with high PV penetration
 - Distributed Control Systems
 - Multifunction Central Storage Systems
 - Micro Grid / Hybrid Power Systems

Reliability, Resiliency, and Efficiency

Enhance asset management and utilization to help manage costs Enable utilization of customer sited energy resources to improve efficiency and reliability

Customer Concerns

Enhance outage management information and control to improve customer service and energy resiliency

Enhance system information and control to improve efficiency and maintain quality of service **Energy Cost and Cost Stability**

Quality of Energy Service

Quality of Customer Service

Ability to connect generation and load resources

Security and Privacy (Overarching Requirement)

> Enable Integration of Utility Scale Renewable Resources

Renewable Integration

Customer Enablement

Enable customers better to understand, plan, and control their energy usage

> Enable more energy program choices for customers

Enable Large Scale DG Integration

> Enable Large Scale EV Integration

Mapping Goals to Solutions

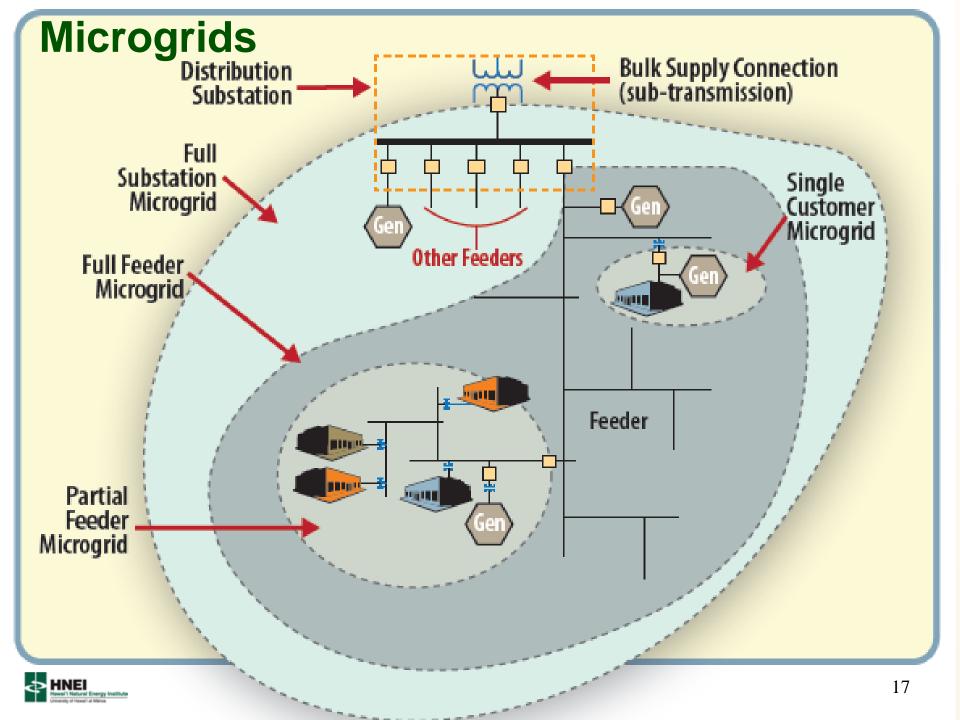
- Enable customers better to understand, plan, and control their energy usage
 - Smart Meter
 - Customer Information Portal
 - Customer Service Agent Information Portal
 - Customer-Site Energy Storage
- Enhance outage management information and control to improve customer service and energy resiliency
 - AMI outage information
 - Faulted Circuit Indicator information
 - Secondary Voltage Monitoring
 - Outage Management System
 - System outage portal
 - Remote switch operation

Identify Foundational Elements

TECHNOLOGY	HECO	HELCO	MECO
FOUNDATIONAL			
Operational Communications			
Wide Area Networks			
Field Area Networks	0	0	0
Neighborhood Area Networks	0	0	0
Sensing & Measurement			
Secondary Voltage Monitoring	0	C	0
Faulted Circuit Indicators	4	4	•
Operational Data Management			
Planning Tools	•	•	•
Operational Systems		O	0
Automated Field Reclosers		0	0
APPLICATIONS			
Smart Meters	٢	0	0

The blue-shaded area in each of the Harvey balls in the table represent the state of progress:

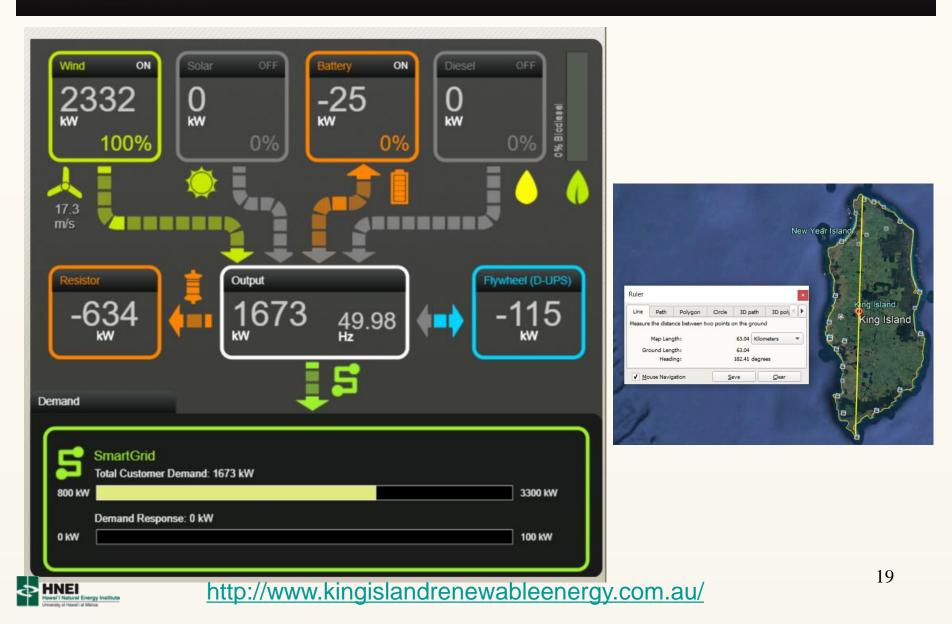
- A fully white Harvey ball means no technology has been deployed.
- A fully blue Harvey ball indicates the technology has been fully deployed.



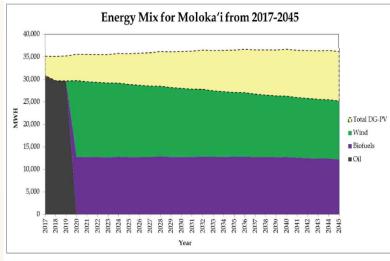
Develop a Deployment Strategy

Table 8 Conceptual Near-Term Deployment of Enterprise Systems and Field Deployments by Operating Company

Technology	Enterprise System	Hawaiian Electric	Hawaiʻi Electric Light	Maui Electric	C-E Method
Advanced Meters		92,000	20,000	52,000	Policy
Head End & MDMS	1				Policy
FCI	1	1,300	500	400	SS&C
Grid 20/20		3,200	1,100	900	Policy
Intelligent Switches		220	75	60	SS&C
Telecom Mesh Devices		230	50	130	SS&C
Secondary Var Controllers		1600	600	400	Policy
Operational Analytics	1				SS&C
DMS	1				SS&C
OMS	1				SS&C
VVO	1				Policy
Data Management	1				Policy
NOC	1				SS&C
DOC		1	1	1	SS&C



"Companies are focusing first on "Islands will be the developing the potential market for singleleaders, because of the customer r "The first few cost of oil, the prospect These proj projects will of doing renewables at more than complexiti use custom a high penetration rate...islands are where developers solutions, but "To reach the innovation will picking fig there's enormous the utility f opportunity for "The mic somethin - Peter Lilienthal, Michael T. Loosts to com "The mic somethin - Homer Energy project fi the soluti way down." -Peter Lilienthal model is from decentranzed absolute energy services." a work ir - Richenda Van Leeuwen, **UN Foundation** progress –Mark Lopata, Microgrid Solar



King Island Renewable Energy Integration Project

Moloka'i 100% by 2020

Year	April PSIP Moloka'i Theme I Plan	April PSIP Moloka'i Theme 3 Plan	100% Renewables by 2020	100% Renewables by 2030
2017				
2018	Install two 5 MVA Synchronous Condenser	Install two 5 MVA Synchronous Condenser		
2019			2.75 MW Contingency Battery Install 2.75 MVA Synchronous Condensers	2.75 MW Contingency Battery Install 2.75 MVA Synchronous Condensers
2020	Install 5 MW Wind	Install 5 MW Wind	Install 5 MW Wind Convert to biodiesel	Install 5 MW Wind
2021				
2022				
2023				
2024				

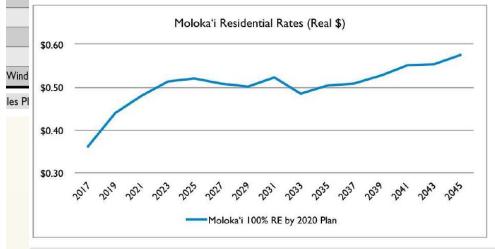


Figure 5-22. Residential Rates (Real \$): Moloka'i

Figure K-62. Energy Mix for 100% Renewables by 2020 Plan on Moloka'i

Renewable Moloka'i Initiative

- 100% Renewable Goal by 2020
- Battery Storage
 - 2MW, 333kW-hr, Li-ion Titanate; kW scale community BESS; chemistry (TBD)
- System Data Collection
- Production Modeling
- Load Flow & Midterm Dynamics Modeling
- Dynamic Load Bank
- PV Forecasting
- Island Grid Controller

Solar Power Forecasting for Hawai'i

HNEI Cloud Monitoring and Solar Power Forecasting System

Regional numerical weather prediction model

- Every night, a multi-day forecast is generated
- Required for accurate predictions longer than ~6 hours ahead
- Creates a framework for shorter-term forecasts from satellites and sky cameras

Satellite images

- Every 15 minutes, images from a geostationary satellite (GOES-WEST) are used to generate 1-km resolution forecasts most accurate in the 30 minutes to 6 hours ahead forecasting range
- Provides boundary conditions for ground-based local forecasts

Ground-based instruments

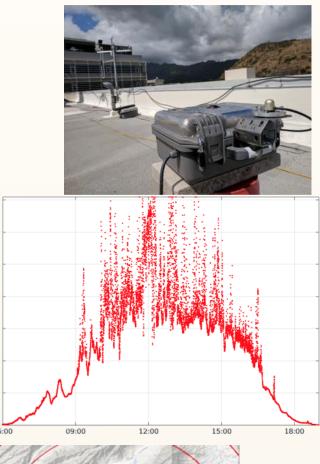
- Every minute, images from a novel sky mapping system developed at HNEI, combined with irradiance observations from pyranometers, are used to generate high resolution, local irradiance conditions
- Every 2-4 minutes, short-term forecasts are generated from the ground-based data

HNEI Ground-based sky imaging and irradiance measuring system

From the data provided by this system:

- Determine cloud positions, velocities and attenuation levels
- Use that information with a clear sky solar model to generate high resolution irradiance nowcasts and forecasts maps
- From irradiance maps > PV power predictions

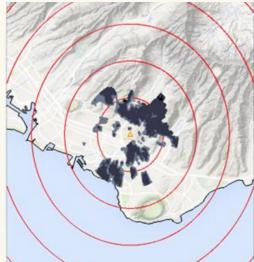
Goal:


- To facilitate widespread, overlapping field deployment
- Low production cost using off-the-shelf instrumentation, opensource single-board computing hardware, and DIY technologies
- "Swarm" approach low cost multiple camera system can remain resilient and functioning with individual camera failures.

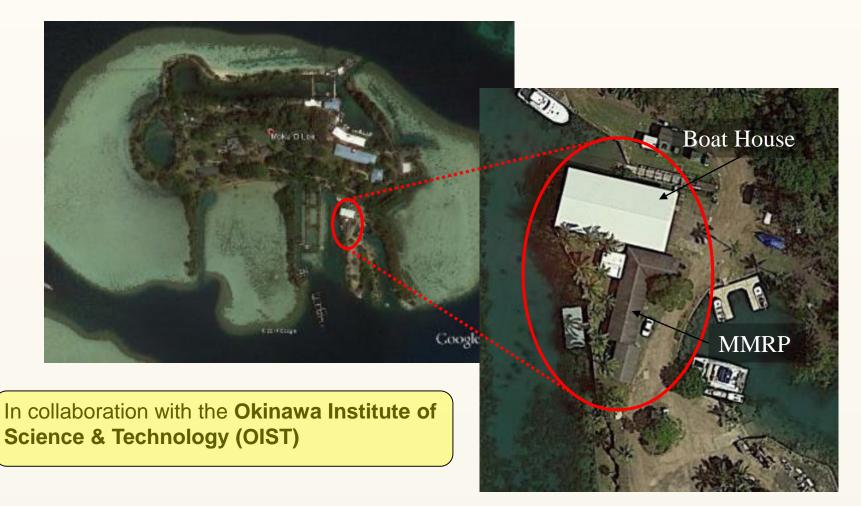
Development Timeline:

- Completed Software design and prototype testing
- 2018 First operational deployment on the island of Moloka'i

1400

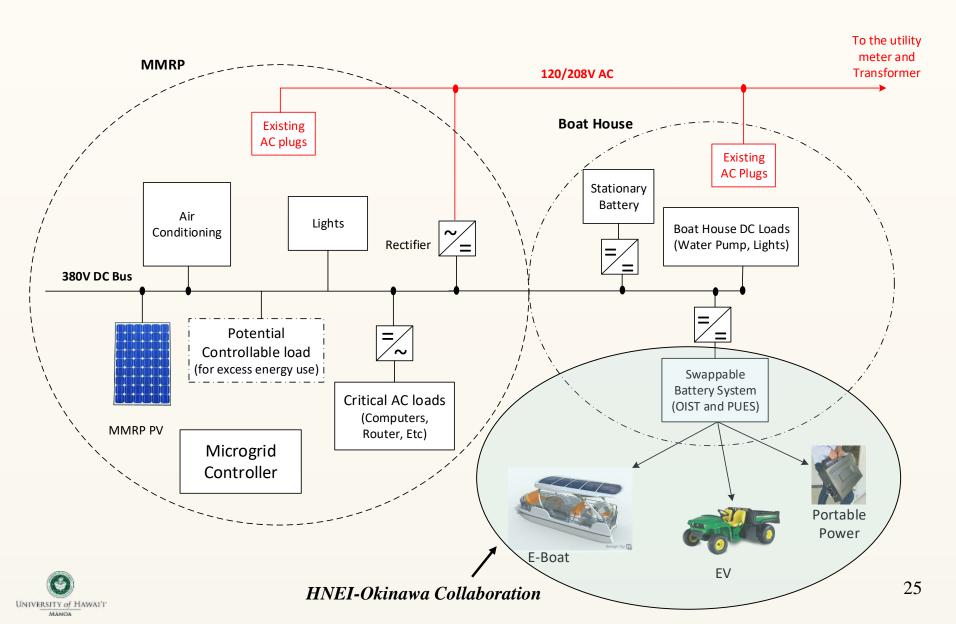

1200

1000


800

200

RRADIANCE [W/m2]



Moku o Lo'e DC Microgrid Project ("Coconut Island")

DC Microgrid Conceptual Design

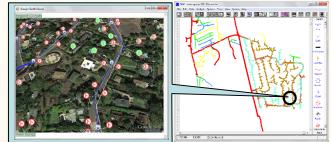
Smart Microgrid Projects

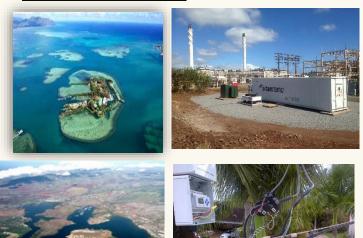
Smart/Microgrid Controls

HNEI develops algorithms and technologies to control and manage power to stabilize the power grid and to increase resiliency.

- ✓ Maui Smart Grid Demand Reduction Project
- ✓ Smart-Grid PV Inverter Project
- Palau high-speed BESS for contingency response
- High Resolution Solar Forecasting
- Advanced Conservation Voltage Reduction Technology Development Project
- Predictive Distribution Operator

Resilient Renewable Energy Microgrids


HNEI is developing, installing and testing smart and microgrid technologies in Hawaii and at US installations in the Pacific region


- Molokai Secure Microgrid Demonstration
- Coconut Island DC Hybrid Microgrid
- JBPHH Infrastructure Modernization and Renewable Integration Project
- Navy Marianas Infrastructure Modernization and Renewable Integration Project
- Navy Marianas Solar Integration Project
- USMC Okinawa Renewable Energy and Conservation Voltage Reduction Demonstration
- NAVFAC HI Advanced Inverter Demonstration

Grid System Technologies Advanced Research Team

Mahalo! (Thank you)

1

For more information, contact:

Grid System Technologies Advanced Research Team

Marc Matsuura

Sr. Smart Grid Program Manager GridSTART

Hawaii Natural Energy Institute School of Ocean & Earth Science & Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, Hawaii 96822

Office: (808) 956-5070 Mobile: (808) 321-8928 E-mail: marc.matsuura@hawaii.edu Website: www.hnei.hawaii.edu

