APEC EGNRET 50, Hawaii, U.S.A.

Capacity Building on Renewable Energy and Update of New and Renewable Energy in Japan

March 21th, 2018

Takao Ikeda The Institute of Energy Economics, Japan (IEEJ)

Capacity Building on Renewable Energy

Update of New and Renewable Energy in Japan

Capacity Building on Renewable Energy (1)

• Government Initiative (METI):

"Machi-Ene(Town-energy) University" (Green Power Workshop)

- Business school for starting up renewable energy business
- For local residence/organization who is considering starting up new business using renewable energy
- Government Initiative (METI):
 - Geothermal, Small Hydro
 - For local residence understanding the renewable energy projects and related benefit for the communities
- Government (METI local offices)/Local governments Initiatives:
 - > All renewable energy
 - For local business entities updating the information on renewable energy technologies and current legal system and so on

Capacity Building on Renewable Energy (2)

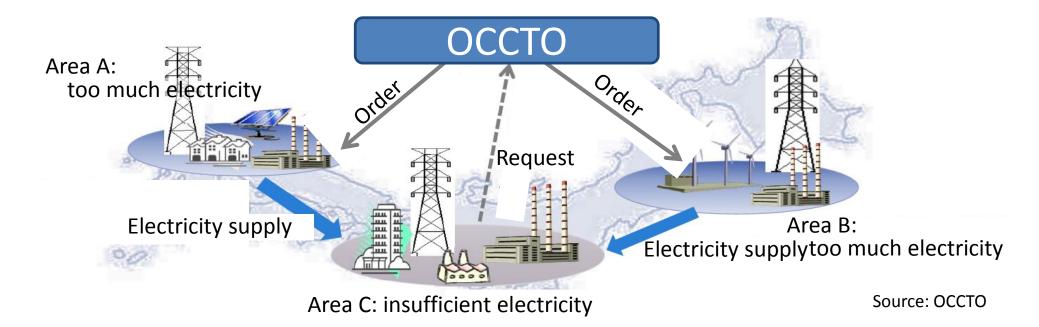
- Local government Initiative (e.g. Fukushima Prefecture)
 - Technologies for all Renewable Energy, Energy Efficiency, Energy Storage, Smart Community(BEMS, HEMS, etc)
 - > For Local residences who will works for above energy industries
 - Trainings are held at National Research Center, Universities and colleges in Fukushima Prefecture
- Industry Initiative (Japan Photovoltaic Energy Association)
 - Establish licenses for PV Installation, Maintenance and so on in order to avoid low quality operation business.
 - Offering trainings for the licenses
- Organization's Initiative (New Energy Foundation):
 - Geothermal, Small Hydro, Wind, Commercialization
 - > For newcomers, experiences(operators and engineers)'s better understanding
 - > Part of the trainings programs are subsidized by METI

Capacity Building on Renewable Energy

Update of New and Renewable Energy in Japan

FIT Tariff after FY2017

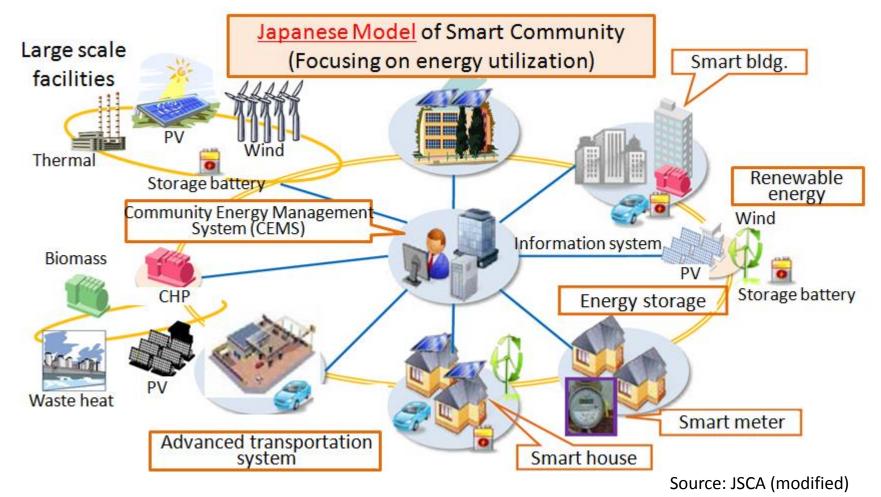
				Purchase prices (JPY/kWh)					
				FY2017				Purchase period	
				Apr Sep.	Oct Mar.	FY2018	FY2019		
Solar	Less than 10 kW			28		26	24	10 years	
	when output control system are required			30		28	26		
	Less than 10 kW (+ energy storage system)			25		25	24		
	when output control system are required			27		27	26		
	10-2,000 kW			21				20 1100 15	1
	2,000 kW or more			Tender			20 years		
Wind	Less than 20 kW		55					1	
		20 kW or	more	22	21	20	19	20	
	Onshore	repla		1	8	17	16	20 years	
	Offshore	20 kW or	more	36		36	36		
Geothermal	Less than 15,000 kW		4	0	40	40	-		
	replace whole equipment		3	0	30	30			
	replace above-ground equipement				19	19	15 years		
	15,000 kW or more				26	26			
	replace whole equipment				20	20			
	replace above-ground equipement				12				
Hydro		Less than 200 kW		34		34	34		
	Fully new	200-1,000 kW		29		29	29		
	facilities	1,000-5,000 kW		27		27	27		
		5,000-30,0	000 kW	24	20	20	20	20	
	Utilize	Less than	200 kW	2	5	25	25	20 years	
	existing	200-1,000	kW	21		21	21	1	
	headrace	1,000-5,000 kW		15		15	15		
	channels	5,000-30,000 kW		12		12	14		
Biomass	Wood	Less than 2,000 kW		24		24	24		
	(general)	2,000 kW	or more	24	21	21	21		
	Forest	Less than 2,000 kW		4	0	40	40		
	residues 2,000 kW or more		32		32	32	20 years		
	Wood waste from buildings			13		13		13	1
	Municipal waste			17		17		17	
	Biogas			39		39		39	

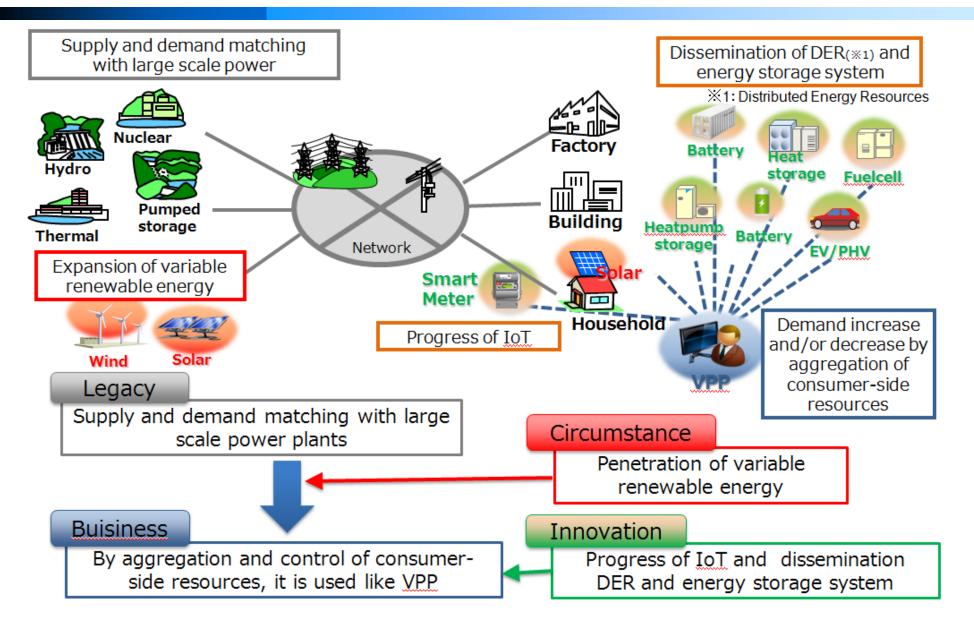

- Announcement of FIT rate for multiple years in advance
- PV "graduated " FIT from FY2017(1.5 GW in FY 2017&18)
- Wood Biomass will graduate from FY2018
- Other rate in FY2020 will be same as FY2019

Grid system in Japan (Background)

There are 10 electric power companies in Japan. They are responsible for the electricity supply in each area. \rightarrow Small and narrow land area to manage Insufficient interregional connections Frequency difference between East and West \rightarrow Difficult nationwide management trunk power line ⇒ <u>Small-scale grid management</u> 60Hz 50Hz frequency converter station frequency converter station ransformer substation 60Hz 50Hz trunk power line Tokyo Osaka

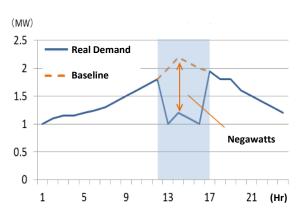
Nationwide Grid Management (FY2015-)

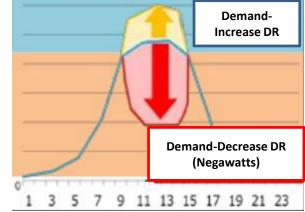

- <u>OCCTO</u> was established in 2015. (Organization for Cross-regional Coordination of Transmission Operators, JAPAN)
 - Electricity supply-demand balance
 - Frequency control for cross-regional operation
 - ⇒ enables to connect more renewable electricity


Distributed and Smart Energy System

(Smart Community demonstration projects FY2010-2014)

- Distributed renewable energy
- Efficient energy management (IoT, energy storage, etc.)
 - \rightarrow Energy system less dependent on nationwide grid


VPP(Virtual Power Plant) demonstration project (FY2016-)



Guidelines for Energy Resource Aggregation Business

- "The Guidelines for Trading Negawatts" was established in 2015
 - Concept of "Negawatts": Power demand reduction from the baseline can be recognized as a kind of power supply
 - > Design of trading the Negawatts power at the Negawatts trading market
- "Guidelines for Energy Resource Aggregation Business" was established in 2017
 - Revision of the "Guidelines for Trading Negawatts"
 - Concept of "Demand-Increase DR" is introduced
 - Compensation for Negawatts was established*
- ERAB : <u>Energy Resource Aggregation Business</u>
 - "ERAB" is a business framework in which businesses make use of VPPs and DR
 - Provide a variety of services for
 - ✓ Electricity adjustment,
 - ✓ Avoidance of supply-demand imbalance,
 - ✓ Electricity-rate cut,
 - ✓ Avoidance of output control and other measures to their customers

* Compensation for negawatts is a cost for adjusting the cost-benefit gap between electricity retailers supplying electricity to consumers who have controlled electricity demand and aggregators.

Current discussion toward more renewable energy deployment

More deployment of renewable energy is under discussion at "METI Subcommittee on Large amount of renewable energy integration & Next Generation Electricity Network (under both of Electricity & Gas committee and RE & EE committee) "

- Increase the grid operation capacity for renewable energy connection by reducing the slot for emergency use (Utilization of the emergency slot that is not actually used)
- Review of *<u>Disconnection (Priority Dispatching) Rules</u> from the viewpoint of economical operation (e.g. Only large facilities should be disconnected and be compensated by mid-small facility for fairness)
 - *Disconnection/output curtailment (Priority Dispatching) Rules: Rules when PV/Wind output exceeds total demand
 - ①Avoidance of generation at reservoir/adjustable type hydro power stations during daytime
 - 2 Absorption of excess power by pumped storage operation
 - ③ Suppression of thermal power generation to the operational minimum
 - (4) Exporting excess power through the interconnection lines by cross-regional system operation
 - (5) Suppression of biomass power generation (direct combustion and local resource-based)
 - (6) Disconnection of PV and wind power
- Discussion of benefit from "Demand-Increase Demand Response"
- Reduction of grid operation cost should be considered at the investment stage
- Promotion of offshore wind power generation

Thank you for your attention!