Ocean Thermal Energy Conversion (OTEC): Electricity and Desalinated Water Production

Luis A. Vega, Ph.D. PICHTR

Visionary Perspective

• Solar energy absorbed by oceans is $\approx 4000 \text{ x}$ humanity annual consumption;

 Less than 1 % of this energy would satisfy all needs.

[@ thermal →electric conversion≈ 3 %]

Engineering Perspective

 Ocean's vertical temperature distribution:

Two layers with $\Delta T \approx 25~^{\circ}\text{C}$ in equatorial waters...

heat source and heat sink required to operate heat engine

Table of Contents

- Technology
- Economics & COE
- Commercialization
- · Hawaii Case Study
- AC/Energy Carriers/Externalities
- Conclusion
- · OTEC Major Cycles

OTEC Concept

· Ocean Thermal Resource (fuel)

Cold Water: @1000 m depth
 4 °C to 5 °C

 Warm Water: Tropical seas at "surface"

24 °C to 30 °C

What is known about OTEC Technology?

 <u>Continuous</u> production of electricity and desalinated water has been demonstrated with experimental plants:

Nauru (1982) 100 kW CC-OTEC

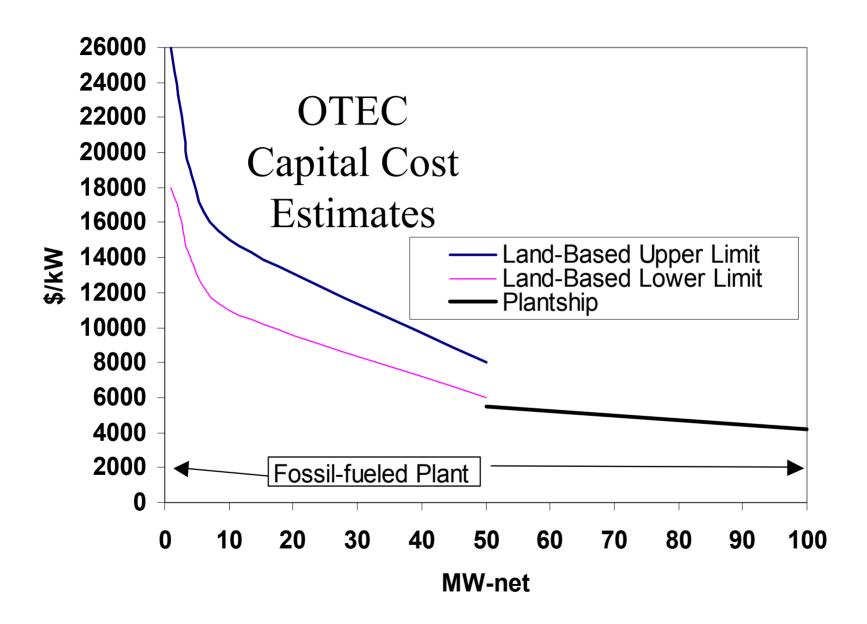
210 kW OC-OTEC Experimental Plant

Desalinated
Water
Production
(1994-1998)

What is known about OTEC Economics?

Economic feasibility
 achievable under certain
 (fuel-and-water-costs)
 scenarios:

Cost of Electricity Production


```
COE ($/kWh) = CC + OMR&R + Profit
+ Fuel
- Environmental Credit
```

```
CC = Capital Cost Amortization

OMR&R = Operations + Maintenance

+ Repair + Replacement
```

Tariff = COE - Subsidy

Nominal Size, MW	TYPE	Scenario	Potential Sites
1	Land-Based OC-OTEC with 2 nd Stage for Additional Water Production.	Diesel: \$45/barrel Water: \$1.6/m ³	Present Situation in Some Small Island States.
10	Same as Above.	Fuel Oil: \$30/barrel Water: \$0.9/ m ³	U.S. Pacific Insular Areas and other Island Nations.
50	Land-Based Hybrid CC-OTEC with 2 nd Stage.	\$50/barrel \$0.4/ m ³ or \$30/barrel \$0.8/ m ³	Hawaii, Puerto Rico If fuel or water cost doubles.
50	Land-Based CC-OTEC	\$40/barrel	Same as Above.
100	CC-OTEC Plantship	\$20/barrel	Numerous sites

Table 1. OTEC Potential Sites as a function of Fuel and Water Cost.

Cost of Electricity Production

Offshore Distance, km	Capital Cost, \$/kW	COE, \$/kWh
10	4200	0.07
50	5000	0.08
100	6000	0.10
200	8100	0.13
300	10 200	0.17
400	12 300	0.22

Table 2. Cost Estimates for 100 MW CC-OTEC Plantship (COE for 10 % Fixed Rate, 20 years, Annual O&M 1% of Capital Cost).

OTEC Commercialization?

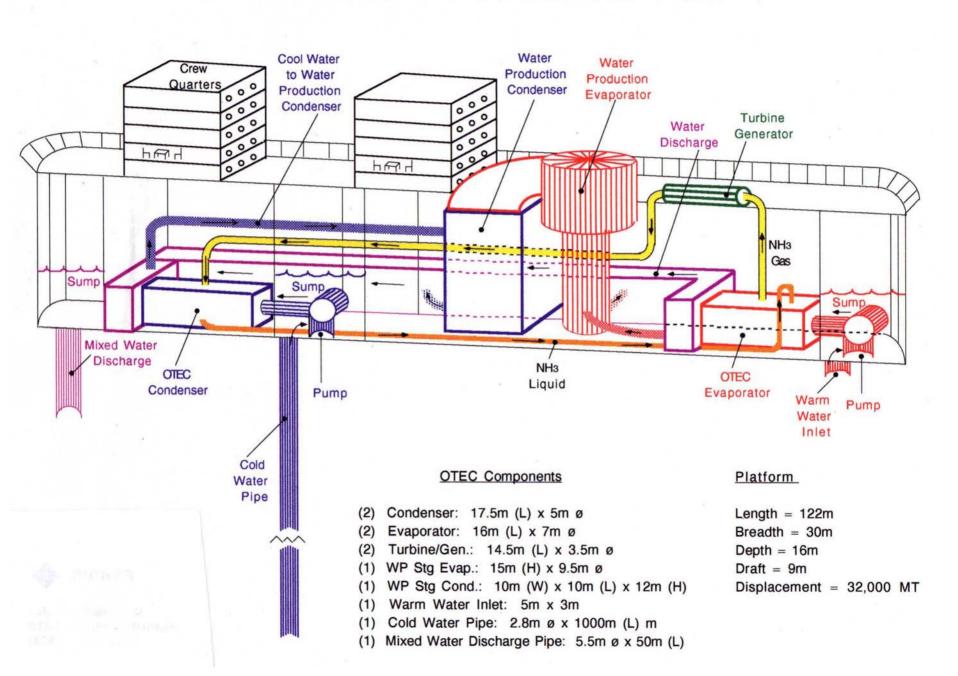
Pro:

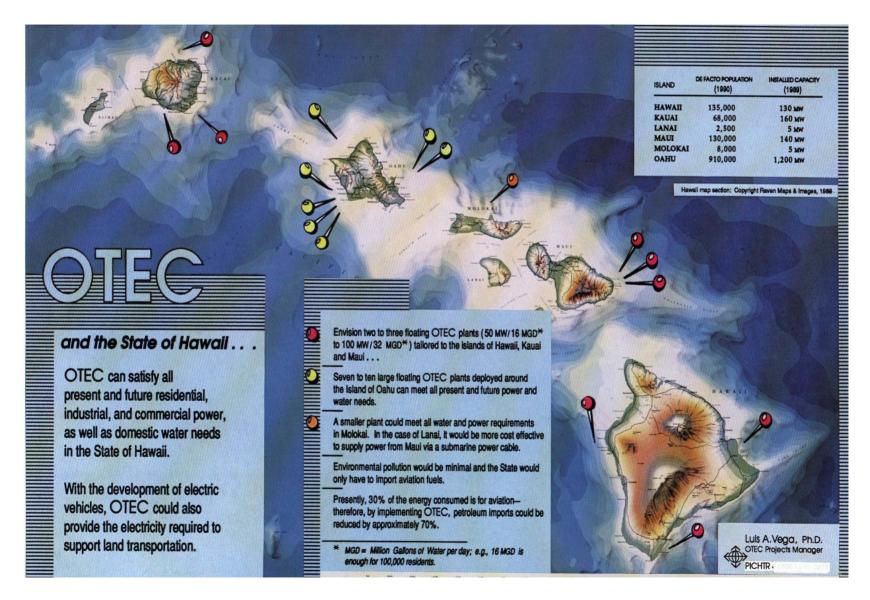
- Less environmental impact than conventional power plants;
- As long as the sun heats the oceans, the fuel for OTEC is unlimited and free.

Con:

 No operational record with <u>appropriate</u> size plant

What Next for OTEC?


 Not wise to scale from experimentalsize to commercial-size;


 Must build and test scaled version of commercial-size: ≈ 5 MW (\$80 M to \$100 M over 5-years).

Commercialization (Hawai'i)

- Hawai'i could use OTEC to Generate all Electricity Consumed (100%);
- Commercial-size≈ 100 MW floater
 - \$4500/kW (\$450M)
 - C.O.E from 0.07 to 0.10 \$/kWh

5 MWe OTEC Pre-Commercial Plant

Development Barriers (Hawai'i)

Tech. Issues: Need to Build & Operate Pre-Commercial Size Plant Cost Issues: Cost Effective for Size ≈ 100 MW

Enviro. Issues: Relatively Minimal Political Issues: Need Federal Help... only Hawai'i benefits (1/250 citizens)?

Other Applications: AC

Cold deep water as the chiller fluid in air conditioning (AC) systems: load can be met using 1/10 of the energy required for conventional systems and with an investment payback period estimated at 3 to 4 years.

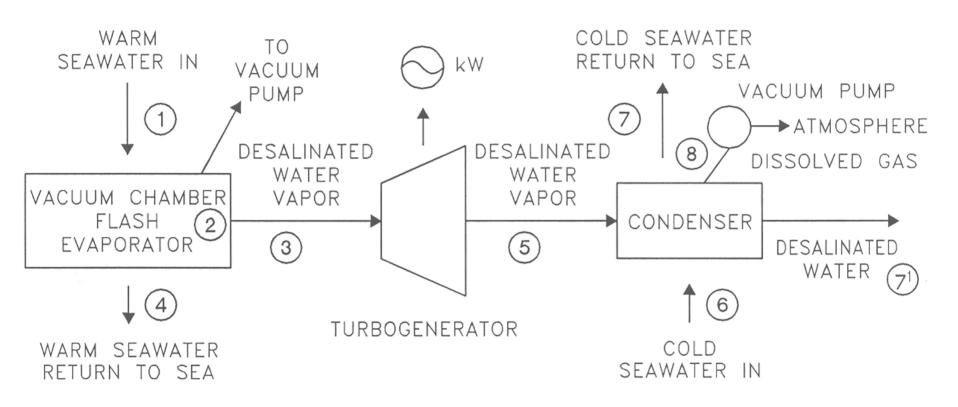
Energy Carriers

OTEC energy could be transported via electrical, chemical, thermal and electrochemical carriers:

all yield costs higher than those estimated for the submarine power cable (*400 km offshore).

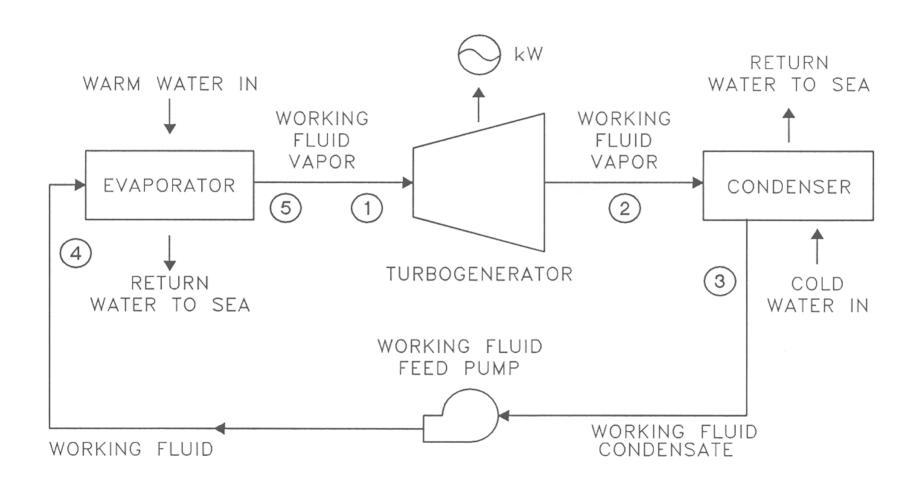
EXTERNALITIES

- What are external costs of energy production and consumption?
- In USA ~ \$78B to \$259B annually (add \$85 to \$327 to oil barrel)
- USA to safeguard overseas oil supplies →add ~ \$23 to barrel


Final Thoughts:

Accounting for externalities will facilitate development and expand applicability of OTEC;

In the interim should use OTEC plantships to transmit the electricity (and water) to land via submarine power cables (and flexible pipelines).


Open Cycle OTEC

Surface seawater is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive a turbine-generator. Cold seawater is used to condense the steam after it has passed through the turbine. The open-cycle can, therefore, be configured to also produce fresh water:

Closed Cycle OTEC

Warm surface seawater and cold deep seawater are used to vaporize and condense a working fluid, such as ammonia, which drives a turbine-generator in a closed loop producing electricity:

