

APEC 21st Century Renewable Energy Development Initiative (Collaborative VI):

Best Practices in New and Renewable Energy Technologies in Urban Areas in the APEC Region (EWG 04/2008)

April 27, 2010 Kuala Lumpur

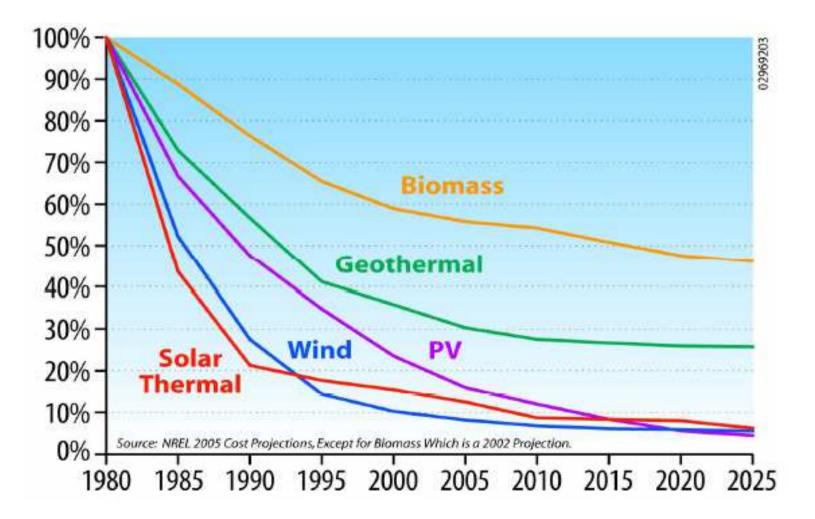
Judy Siegel, Steve McNulty, and Jerome Weingart Energy and Security Group, LLC Reston VA (USA)

Why consider urban renewables?

Context: Increasingly clean, green, efficient, livable cities; energy-efficient buildings and facilities

- Energy security
- Hedge against fuel price and availability uncertainties.
- Cleaner environment via reducing GHGs, particulates, and other harmful emissions. *Many APEC cities have developed climate change action plans.*
- Economic development from new employment, revenues, and profits
- Improved air quality
- Increased energy efficiency in buildings and industry

Project objectives


This project highlighted best practices in the use of NRE and energy efficient technologies in APEC cities

- Identification of lessons learned
- Review of obstacles preventing or inhibiting the widespread adoption of renewable energy
- Documentation of case studies of successful projects
- Preparation of a roadmap to guide future urban renewable energy development

The Largest APEC Megacities (January 2009)			
World Rank	City / urban region	Country	Population (millions)
1	Tokyo	Japan	34
2	Seoul	Korea (South)	24
3	Mexico City	Mexico	23
6	New York	USA	22
8	Manila	Philippines	19
9	Los Angeles	USA	18
10	Shanghai	China	18
11	Osaka	Japan	17
14	Canton	China	15
15	Jakarta	Indonesia	15
18	Moscow	Russia	14
19	Beijing	China	13
Total			231
Source: http://www.citypopulation.de/index.html			

Renewable energy electricity production costs as percentage of 1980 levels (Source: US NREL)

Benefits of large-scale use of urban renewable energy

- A cleaner, healthier environment through improved local air quality and reduced GHG emissions.
- Greater energy security.
- A greener economy, new green jobs.
- Local industrial development.
- Trade and export opportunities.
- Urban renewal.
- Regional development.
- A safer, more secure, cleaner, reliable and more efficient energy system.

Renewable energy technologies for cities

- Solar thermal (water heating, space heating, process heat)
- Solar photovoltaics (freestanding PV systems and building-integrated PV)
- Wind electric (small turbines on buildings, larger turbines on brownfields)
- Geothermal heat pumps

Building-integrated PV

Monash University (Malaysia)

7.36 kWp amorphous thin-film

Urban solar thermal energy options

Technology types

- Glazed flat plate collectors (fluid)
- Unglazed flat plate collectors (swimming pool heating)
- Flat plate collectors (air)
- Evacuated tube collectors
- Parabolic trough collectors

• Applications

- Water heating
- Space heating
- Solar-assisted air conditioning (pre-commercial)
- Low- and medium-temperature industrial process heat (IPH)
- District heating (supplementary energy)

• End use sectors

- Residential
- Commercial / industrial buildings
- Institutional buildings (universities, research centers, etc.)
- Government buildings
- Commercial / industrial processes

Solar thermal industrial process heat (China)

Residential PV retrofit in Los Angeles

Residential PV retrofit in Los Angeles

24 Sunpower PV panels5 KWp grid-connected600 KWh/month

Monthly leasing = 80% of utility charge \$37,000 capital cost (\$7.50 / kWp) \$15,000 final cost after state rebate, federal tax credit

5-year accelerated depreciation on \$18,000 (net plus 50% of tax credit)

1.6 MWp rooftop PV system in Northern California (Google)

Largest PV system on a US corporate campus

Integrated with charging stations for plug-in hybrid vehicles

Brownfields to "brightfields" 425 kWp PV system on brownfield (US)

Urban wind power: transforming brownfields (Utility-scale wind turbines at former steel mill (US)

Figure 5-2: 7.5 MW Urban Windfarm, Atlantic City, NJ (USA).

The electricity is used by both the AC Utilities Authority Wastewater Treatment Plant and delivered to the regional electric grid. Source: Newark, NJ (USA) Star-Ledger newspaper, July 21, 2009 <u>http://www.nj.com/news/index.ssf/2009/0</u> <u>7/surveys on wind turbines sent.html</u>

Small wind turbine (Ontario, Canada)

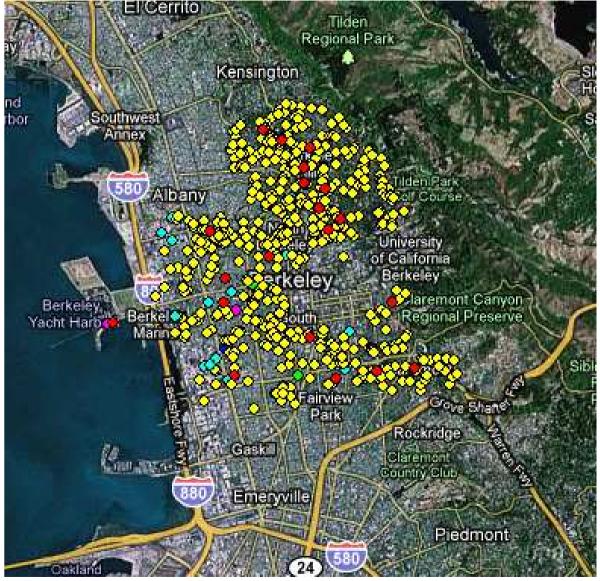
www.cleanfieldenergy.com/site/sub/p_we_installations.php

Obstacles to widespread urban RE

- Policy and institutional
- Financial
- Technology-specific
- Capacity
- Awareness

Some institutional obstacles

- Complex and/or unclear local permitting requirements.
- Land use, zoning, and siting restrictions.
- Restrictions on utility interconnection of RE power generation
- Lack of sufficient inspectors and permitting authorities experienced with RE systems in urban applications.
- Permitting requirements/fees that vary across jurisdictions.
- Lack of certified RE systems for purchasers, lenders, investors, insurance companies and others that meet technical, environmental, safety and performance standards.
- Difficulty for private power developers to sell power generated from RE systems to the grid.
- Protection of contracts and intellectual property.
- Existing electricity laws that can be counter-productive.


Three policies that promote urban renewables in APEC economies

- Renewable Portfolio Standards require a mandated quantity of renewable energy (electricity, fuels) to be purchased in a specific time frame. Market participants (e.g., utility) are required to purchase the associated power/fuel.
- *Feed-in-Tariffs* permit producers of RE electricity to connect to the grid and provide electricity at a mandated price. Feed-in-tariffs are options when local governments have jurisdiction to regulate electric utilities.
- *Tendering* uses government-sponsored competitive bidding for acquisition of RE electricity, with long-term contracts awarded to lowest priced projects.

APEC cities: early adopters and leaders in widespread renewable energy and energy efficiency applications

- Early financial and risk underwriting of innovative approaches helps establish RE markets that stimulate technical innovation, "pull" technology enterprises into the marketplace, and allow costs to decline through technology scale-up.
- <u>Policies must evolve</u> with scale-related obstacles to implementation.
- <u>APEC cities are innovation incubators</u>, supporting new technology and policy approaches that would be premature on a national level.
- <u>Pilot / demonstration facilities</u> help stakeholders identify and address potential problems early on.
- <u>Performance standards</u> facilitate technology advancement and cost reductions; prescriptive measures freeze technology.

New tools for urban RE design & mapping

UNEP-sponsored GPS/GIS mapping of urban PV and solar thermal systems

Embedded software calculates potential energy production from individual rooftops and capital and operating costs

Source: UNEP DTIE (Paris 2009)

www.unep.or.jp/letc/Activities/Urban/energy_city.asp

Successful Business Models for New and Renewable Energy Technology Implementation in APEC

APEC Energy Working Group October 2009 Very useful APEC counterpart study

Prepared By: Resource Development Ltd PO Box 21 Hunterville, 4745 New Zealand Tel: (64) 6 322,8773 Email: rdl@iconz.co.nz

Contact:

David Natusch Managing Director

Residential Sector Case Studies

- PR China Solar Water Heating and Lighting
- Canada GeoExchange in Residential Buildings
- Malaysia BiPV Application Project

Commercial Sector Case Studies

- Australia Queen Victoria Market (photos)
- United States PV in Wal-Mart Retail Stores
- Chinese Taipei Green Stadium
- Singapore Solar Capacity Scheme
- China BIPV-Suntech Headquarters in Wuxi

Wal-Mart Corporation (US)

- > 7,900 stores in 15 countries
- Corporate sustainability goals
 - obtain 100 percent of energy from renewables
 - create zero waste
 - sell products that sustain resources and environment.
- 7 Wal-Mart stores in California to have 4.6 MWp PV
- SunPower Access Program: power purchase agreement allows customers to obtain environmental and financial benefits of solar power with no upfront capital costs.
- The solar electricity competitively priced, providing Wal-Mart with a long-term hedge against rising peak power prices.

Industrial Sectors

Thailand: – Bagasse-Fired Cogeneration

China: Large Scale Industrial Biogas Program

Utility Sector

United States – 1.2 MWp La Ola Solar Farm

 Chinese Taipei – Changbin and Taichung Wind Farms

Roadmap Steps

- 1. Assess potential impacts of renewable energy
- 2. Make a commitment to renewable energy and initiate a plan of action
- 3. Build an effective policy framework
- 4. Establish rules and regulations
- 5. Address technical issues
- 6. Provide access to financing
- 7. Launch a RE awareness campaign
- 8. Strengthen local capacity
- 9. Lead by action
- 10. Plan management

EWG 04/2008, APEC#210-RE-01.1 <u>http://publications.apec.org/publication-</u> <u>detail.php?pub_id=980</u>

For further information:

judy@energyandsecurity.com

jmweingart@aol.com