INTERNATIONAL RENEWABLE ENERGY AGENCY

International Renewable Energy Agency

Accelerating the Growth of Renewable Energy

APEC EGNRET 44 Laoag, the Philippines, 13 - 14 April 2015

- 1. Introduction of IRENA
- 2. Transitioning towards Renewable Power Generation
- 3. REmap 2030
- 4. Capacity Building
- 5. Renewable Readiness Assessment
- 6. The Role of IRENA

Introduction of IRENA

The International Renewable Energy Agency

The Voice, Advisory Resource and Knowledge Hub for 171 Governments

Renewable energy can:

- Meet our goals for *secure*, *reliable* and *sustainable* energy
- Provide *electricity access* to 1.3 billion people
- Promote *economic development*
- At an *affordable cost*

Structure and Membership

Headquarters: Abu Dhabi, United Arab Emirates

Three Programmes:

- Innovation and Technology Centre (IITC) in Bonn, Germany
- Knowledge, Finance and Policy Centre in Abu Dhabi
- Country Support and Parnterships in Abu Dhabi

Foundation 26 January 2009 in Bonn International Agency since April 2011 The only international RE agency worldwide

Scope

Hub, voice and source of objective information for renewable energy

Mandate Sustainable deployment of the six forms of renewable energy resources (Biomass, Geothermal, Hydro, Ocean, Solar, Wind)

Thematic Areas of the Work Programme

- Planning for the global energy transition
- Gateway to knowledge on renewable energy
- Enabling RE investment and growth
- Renewable energy access for sustainable livelihoods
- Islands: lighthouses for renewable energy deployment
- Regional action agenda

IRENA Publications

SIRENA

OFF-GRID RENEWABLE ENERGY SYSTEMS: STATUS AND METHODOLOGICAL ISSUES

SSIRENA

A GUIDE FOR COUNTRIES ASPIRING TO SCALE-UP RENEWABLE ENERGY

Transitioning towards Renewable Power Generation

Renewables Dominate New Capacity Additions

Scaling-up all renewable energy sources

Total global RE use in REmap 2030: 132 EJ/yr

High levels of variable renewables are competitive

REmap 2030

REmap 2030 - A roadmap for doubling the RE share

- Originates from the United Nations global Sustainable Energy for All (SE4ALL) initiative
- Three objectives, all to be achieved by 2030:
 - Universal energy access (rural electrification, modern forms of renewables)
 - Doubling the rate of energy intensity improvements
 - Doubling the share of renewables in the global energy mix (compared to 2010 level)
- Each objective has its own hub; IRENA is the thematic hub for renewables
- 2014-2024: UN decade of Sustainable Energy for All

REmap 2030 - A roadmap for doubling the RE share

 REmap explores the potential, cost and benefits of doubling the renewables share in the global energy mix

Technology options

- No target setting; options characterised by their cost and potentials
- Technology options can be combined into scenarios and translated into policy action
- Focuses on power, district heat and end-use sectors
- Coverage: **40 countries**; 80% of the global energy use
- Developed together with & validated by country experts

REmap countries

Dark green: Completed country analysis in June 2014 (26 countries) **Light green**: Ongoing country analysis end of 2015 (14 countries)

Breakdown of Global Renewable Energy Use in 2010

Globally 18% RE in Total Final Energy Consumption (TFEC) Half is traditional biomass, 8.4% modern renewables

Global RE Use in 2030 including REmap Options

Remap 2030 – 132 EJ (final energy) 60% is biomass

18

Mapping Out the Renewable Energy Transition

Breakdown of Total Global Renewable Energy Use in 2030 (%)

26 countries – 75% of global energy consumption

China is the largest single market for global renewable energy use

REmap 2030 key findings

- Doubling the RE share from 18% in 2010 to 36% in 2030 is technically achievable with existing technologies
 - Higher shares in power generation
 - More attention needed for heating and transportation fuels
- Doubling is affordable when externalities are accounted for
 - However these are not reflected in todays prices and markets are distorted because of energy subsidies
 - Macro-economic benefits include more jobs; economic activity; health benefits; a cleaner environment; a higher level of energy security
- Biomass is key resource
- Potential exists in all countries, and differentiated action

Benefits for Health, Environment and the Economy

Comprehensive REmap country reports CON IRENA

- Purpose: Translate analysis into actionable options
 - Areas for joint action to accelerate RE deployment
- China, Mexico, UAE, United States, Ukraine completed
- India, Poland, South Africa reports in preparation
- Discussion on-going with other countries

Capacity Building

Technical Capacities for RE

- **RE on Power Grids** *(implementing)*:
 - Certify installers to properly install PV
 - Train island utilities and regulators to understand grid stability analyses and potential for reliable RE integration
 - Train island utilities to operate grids with higher RE shares.
- RE in Buildings (envisioned):
 - Certify installers to properly install PV and SWH
 - Train auditors to conduct EERE audits
- RE Systems (envisioned):
 - Training in proper installation, operation and maintenance of renewable desalination and waste-to-energy systems.

Entrepreneurial Capacities

RE in Electricity Markets:

- Training on how to follow wind measurement guidelines in developing bankable wind power projects (proposed)
- Training to set up and operate PV businesses (ProSPER: Promoting a Sustainable Market for Photovoltaic Systems in the ECOWAS [Economic Community of West African States] Region) – focus on enterprise development and linkages with financial institutions.
- RE in Buildings:
 - Training to set up and operate ESCOs (proposed)

Policy and Regulatory Capacities

RE in Electricity Markets (activities envisioned):

- Train policy-makers on how to set targets and meet them
- Train regulators on setting rates for the power *utility*.
 - Appropriate Rate of Return (ROR)
- Train regulators on market opening to *IPPs*
 - Design of Power Purchase Agreements
- Train regulators on market opening to *prosumers*
 - Net billing to share rents between prosumers and utility

Possible Areas for IRENA-APEC Cooperation on Capacity Building

Training for PV Installers:

- IRENA training seminars in cooperation with SPREP (Secretariat of the Pacific Regional Environment Program)
- APEC EGNRET [NRE142-6] APEC Building Mounted PV Best Practices and Latest Development Comparative Study (Proposed)
- Business Models for PV Entrepreneurs:
 - IRENA work on business models for mini-grids, in cooperation with Mini Grids High Impact Opportunity (HIO) of UN Sustainable Energy for All (SE4All) initiative.
 - APEC EGNRET [NRE142-2]: Innovative business models for scale-up application of solar photovoltaic technology in APEC (Proposed)

Renewable Readiness Assessment

RRA Approach

"Problems cannot be solved by the same level of thinking that created them."

---Albert Einstein

RRA Approach

- Taking a holistic and system approach
- But, focusing on key issues
- Formulating actionable activities/programs with multi-stakeholder participations

Conduct Institutional capacity Analysis

- 1. A thorough map-out of *who is doing what* against *who is supposed to do*
- 2. Emerging issues are calling for additional skills and manpower: *are we there?*
- 3. Multi-stakeholders are offering multiple perspectives as well as various demands
- 4. What institutional capacity should be in place from a national and long-term perspective?

Effective use of GIZ PV Guidebook for the Philippines

- The guiding should be viewed as a dynamic process as the administrative procedures are evolving
- Effective dissemination and communication may be helpful for investors/developers to better use the resources provided in the Guidebook
- 3. Feedbacks are always welcome and timely addressed

Conduct country study on rural minigrids

Contexts of the study

- Energy supply by
 renewable resources
 providing more than just
 sources of energy
- b. Improved electrification rate is not enough

Conduct country study on rural minigrids

Objective:

to facilitate the Philippines to create enabling environment for renewable energy-based mini-grid deployment to shift the paradigm for universal energy access as well as for enhanced energy security

Scope:

covering the issues from estimation of physical potentials, policy and regulatory framework, technological options/guidelines, business models, to evaluation of long-term social and economic benefits that such systems can generate for the society as a whole

Focus:

islands and remote/unelectrified regions where RE-powered mini-grids can be economic viable and also used for promoting rural development

RE Minigrids for off grid island states and remote areas in Philippines

• Off grid power generation dominated by diesel operated minigrids

 NPC-SPUG under their Missionary Electrification programme serves 213 islands and isolated grids (Feb, 2012)

Hybridization of diesel minigrids reduces generation costs

- Techno-Economic studies¹ of the 3.57 MW diesel power plant at Busuanga Island show that hybridization with a 3 MW solar PV system can reduce the LCOE from 34.7 to 29.8 USDc/KWh
- Annual diesel consumption reduces by more than 1.2 million liters

• Study on the potential of Minigrids for remote energy access

 IRENA to provide technical advisory as a follow up to the RRA; study the potential of RE hybridization of existing diesel based minigrids & RE minigrids for remote areas

¹ RE in hybrid and isolated minigrids: Economic benefits and business cases

The Role of IRENA

Sharing experiences

Identify best practices

From planning to operation

Masaomi Koyama mkoyama@irena.org

Appendix: Smart Grids and Renewables

Smart grids for variable renewables

Technology options in five areas

- Transmission
- Distribution
- Generation
- Consumer
- Storage

Many technology options:

Advanced metering Better forecasting **Demand response Distribution automation** Dynamic line ratings Electricity storage Flexible AC transmission High voltage AC/DC lines Smart inverters Synchrophasors Variable electricity pricing Virtual power plants

Benefits of smart grid functions

Functions → Benefits ↓	Wide-area monitoring and visualization	Flow	Automated voltage and VAB control
Reduced ancillary service cost	√ VISUAIIZATION	Control	
Deferred distribution	\checkmark	\checkmark	\checkmark
investments			
Reduced equipment failures		\checkmark	\checkmark
Reduced distribution		\checkmark	\checkmark
operations cost			
Reduced electricity losses		\checkmark	./
Reduced sustained outages		\checkmark	SO IRENA
Reduced major outages		V SN	ART GRIDS AND RENEWABLES: A COST BENEFIT ANALYSIS GUIDE FOR DEVELOPING COUNTRES
Reduced restoration cost	\checkmark	\checkmark	
Reduced momentary	\checkmark	Y	
outages		Ţ	XAPENAX
Reduced sags and swells		\wedge	Kerry,
Reduced wide-scale blackouts	\checkmark	\checkmark	

Grid investment needs for smart grids

Storage for renewables

Application areas and experiences in South East Asia:

Islands/minigrids

Energy Storage System launched in Sumba island (Indonesia). Increasing the penetration of VRE and improving dramatically the security of supply.

Self-consumption

Sydney (Australia). Case studies coupling PV and storage, raising selfconsumption considerably and relieving problems in the grid due to VRE

Smoothing/supply shift

Okinawa (Japan). Okinawa Electric Power Company and Toshiba developed and installed a 23 MW flywheel system for frequency control in the Okinawa power grid

Cities – opportunities

- 75% of final energy consumption
- 52% population lives in cities; 60% in 2030 (ca 1.4 billion more)
- 31 megacities (>10 mln), 19 in Asia
- 21% of urban population lives in large cities (>1 mln)
 - Average growth rate of 1.5% p.a.
- 50% of urban population lives in small cities (<0.5 mln)
 - Average growth rate of 4.9% p.a.
- 50% of urban energy consumption in non-OECD countries; 65% in 2030