

DOE's Innovative Exploration Technologies Program associated with Conventional Geothermal Systems

APEC WORKSHOP ON GEOTHERMAL ENERGY DEVELOPMENT June 25, 2013 Patrick Dobson DOE/LBNL

Potential Geothermal Resources

Utah

4.87%

Oregon

6.30%

New Mexico -

4.94%

Nevada

14.53%

Montana

2.57%

Idaho

Hawaii

8.11%

6.23%

ENERGY Energy Efficiency & Renewable Energy

USGS Geothermal Favorability Map

- 9 GWe potential from identified resources (black dots)
- 30 GWe potential from undiscovered resources

A. Identified Geothermal Resources

Alaska

7.47%

Arizona

0.29%

Wyoming 0.43%

Utah

2.03%

Oregon

5.96%

New Mexico 1.88%

Nevada

15,38%

Montana

0.65% Idaho

3.68%

Hawaii

2.00%

Colorado

0.33%

Washington 0.25%

California

59.67%

Goals of Hydrothermal & Resource Confirmation Program

- Develop advanced exploration tools and technologies through supporting exploration R&D projects to accelerate the discovery and utilization of geothermal resources
 - Improve ability to accurately predict subsurface temperatures
 - Improve ability to identify permeable zones at depth
- Reduce the high level of exploration risk, lower the cost of geothermal power, and increase the economic viability of exploration technologies
- Generate useful data for the National Geothermal Data System
- Exploration R&D projects consist of application of innovative technologies
 - Green field exploration
 - Brown field exploration
 - Expansion of existing geothermal fields
- Other efforts include:
 - Develop exploration best practices and case histories on DOE's Open Energy Information (OpenEI) website
 - Data gap analysis

Hydrothermal Resource Confirmation

Innovative Exploration Technologies Drilled in 2011

Performer	Project Site	Exploration Technologies	DOE Funds	Awardee Cost Share	TOTAL COST
Geysers Power Company, LLC	Northwest Geyser, CA	Geophysics	\$5,000,000	\$7,130,647	\$12,130,647
Nevada Geothermal Power Company	Crump Geyser, OR	Geophysics	\$1,764,272	\$1,839,271	\$3,603,543
ORMAT Nevada, Inc.	Wister, CA	Geophysics	\$4,911,330	\$5,575,229	\$10,486,559
Presco Energy, Inc.	Pershing County (Rye Patch), NV	Geophysics	\$2,277,081	\$1,934,149	\$4,211,230
Pyramid Lake Paiute Tribe	Pyramid Lake, NV	Geophysics	\$4,845,534	\$0	\$4,845,534
Utah State University	Snake River Plain, ID	Geophysics, Geochemistry	\$4,640,110	\$1,804,488	\$6,444,598
Energy Efficiency & Rene	wable Energy	4			eere.energy.gov

Hydrothermal Resource Confirmation

Innovative Exploration Technologies Drilling 2012-2013

Hydrothermal Resource Confirmation

Innovative Exploration Technologies Projected Drilling 2013-2014

Performer	Project Site	Exploration Technologies	DOE Funds	Awardee Cost Share	TOTAL COST
Nevada Geothermal Power Company	Pumpernickel, NV	Geochemistry	\$1,597,847	\$1,597,847	\$3,195,694
ORMAT Nevada, Inc.	Glass Buttes, OR	Remote Sensing	\$4,475,015	\$4,050,500	\$8,525,515
Ram Power, Inc. (Sierra Geothermal)	Silver Peak, NV	Remote Sensing	\$5,000,000	\$7,356,546	\$12,356,546
Ram Power, Inc. (Sierra Geothermal)	Alum, NV	Remote Sensing	\$5,000,000	\$7,356,546	\$12,356,546
University of Kansas Center for Research Inc.	Fish Lake Valley, NV	Geochemistry	\$2,299,237	\$1,943,282	\$4,242,519
Flint Geothermal LLC	Western Colorado	Remote Sensing	\$4,778,234	\$3,007,300	\$7,785,534
ORMAT Nevada, Inc.	Maui, HI	Remote Sensing, Geochemistry	\$4,377,000	\$4,327,260	\$8,704,260
Davenport Power, LLC	Newberry Volcano, OR	Geophysics	\$5,000,000	\$7,830,425	\$12,830,425

Snake River Plain, ID Utah State University

3 wells drilled to evaluate region with elevated heat flow

- Kimama 1912 m hole with 98 C BHT, penetrated mostly basalt, with thick cold aquifer down to 960 m
- Kimberly 1958 m hole with thick isothermal section (55-60 C) below 400 m, penetrates margins of silicic caldera
- **Mountain Home** 1821 m hole with artesian flow of 129 C from fluid entry at 1745 m; well penetrates basalts and lacustrine sediments

Artesian flow at Mtn. Home

Shaded relief topographic map of **Snake River Plain**

Pilgrim Hot Springs, AK University of Alaska, Fairbanks

- Forward looking infrared (FLIR) airborne survey used to identify extent of hot springs and hot ground
- Geoprobe holes (20-40 m) used to identify shallow outflow plume, pinpoint upflow location for deeper drilling targets
- Integrated geophysical data (MT, gravity, magnetics) with geology

San Emidio, NV US Geothermal, Inc.

- Used structural kinematic analysis, PSInSAR, gravity, magnetics, and reflection seismic techniques to identify and map Large Aperture Fractures (LAFs) and identify drilling targets
- Key accomplishments:
 - 4 out of 5 wells encountered commercially exploitable permeability and temperature
 - Added 2 MWe to currently operating wellfield
 - Expanded possible southern resource area by 2.6 km²
 - Found resource with temperatures
 6 to 11 C higher than previously
 observed

U.S. DEPARTMENT OF

Structural Controls of Geothermal Systems (Faulds, 2013)

ENERGY Energy Efficiency & Renewable Energy

Geothermal 'fairway' of high fracture permeability and fluid flow where:

- Co-location of critically stressed fault segments
- High fault intersection density

Hydrothermal Cost-Reduction Cascade

Information Collection, Sharing, and Analysis OpenEl and NGDS

Geothermal Hon

Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links

Geothermal Energy

spectacular backdrop for a cooling tower array at

from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° ${\rm F}(^{11})$ This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located several miles deep into the Earth, $^{[2]3]}$

Geothermal energy is heat extracted

the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal reservoirs are generally classified as either low temperature

(<302*F) or high temperature (>302*F). Commercial electricity production normally requires a high-temperature reservoir capable of providing hydrothermal (hot water and steam) resources, called hydrothermal reservoirs.^[1]

Geothermal is distinct from other renewables such as solar or wind because it is a considered a "baseload" technology, providing electricity 24 hours a day, 365 days a year. $^{(4)}$

Geothermal Market Data

In 2012, the Geothermal Energy Association reported a global installed geothermal capacity of 11,224 MW, and a U.S. Installed geothermal capacity of 3,187.^[5] Geothermal energy accounts for approximately 3% of renewable energybased electricity consumption in the United States.^[6]

An engineer inspects the blades of a backup 5-1 turbine at a Northern California Power Agency (NCPA) geothermal power plant at The Geysers. Find more information on Installed Geothermal Capacity, Geothermal Generation, and Planned Geothermal

en.openei.org/wiki/Gateway:Geothermal#

Capacity.

Energy Efficiency & Renewable Energy

ENERGY Energy Efficiency & Renewable Energy

http://geothermaldata.org

12

Workshop Results Priority technology needs (1 of 2)

CROSS-CUTTING	 Conceptual Models Structural Evaluation of Geothermal Systems 3D Visualization and Modeling Software Database of Case Histories and Analysis Tools Geothermal Potential Maps
GEOLOGY/STRUCT URE STRESS/STRAIN	 Core Log Analysis Stress/Strain Data Mapping Basic Geologic Setting and Permeability Coupled Transport Modeling District Mapping Rock Property Data-Data Set
NON-INVASIVE GEOPHYSICS	 Gravity Tools and Techniques Inverse Methods Seismic (reflection seismic, passive, source) EM Improvements 3D EM Interpretation Techniques High Density Data Acquisition Instruments

Workshop Results Priority technology needs (2 of 2)

INVASIVE GEOPHYSICS	 Well Logging Tools Crosshole/Downhole Techniques Vertical Seismic Profiling (VSP) EM Improvements Heat Flow Logging
AIRBORNE EXPLORATION	 MT/EM Tools/AFMAG Gravity Tools Regional Remote Sensing Data Collection Synthesis of Multiple Data Sets Processing Methods Single Source Database
GEOCHEMISTRY	 Reaction Transport Modeling Isotopic Exchange/Permeability Distribution New Signal Detection Tools Geothermometers Fracture Detection Tools Improved Consistent Thermodynamic and Kinetic Database

Technology Needs Categories and Priorities

Workshop Results Metrics proposed

U.S. DEPARTMENT OF ENERGY R

Energy Efficiency & Renewable Energy

eere.energy.gov

Concluding Remarks

- DOE's Hydrothermal & Resource Confirmation Program has supported many field R&D projects over the past 3 years to test innovative exploration technologies
 - Identify and develop blind hydrothermal resources
 - Lower exploration risk
 - Lower geothermal power cost
- Data collection and analysis critical to maximizing project benefits
- Roadmapping work used to identify technology barriers, focus future R&D efforts of program
- Many aspects of this program are applicable to EGS, coproduction, and low temperature resources

