Recent Advances in US Geothermal R&D: Implications for Global Development

APEC Workshop on Geothermal Energy Development
Taipei, Chinese Taipei
June 25, 2013

Doug Hollett, Director, Geothermal Technologies Office
Office of Energy Efficiency and Renewable Energy
U.S. Department of Energy
Geothermal Program: Key Goals and Objectives

Creating Impact

Increased Focus

Identify New Geothermal Opportunities
- Lowered risk and cost
- New prospecting workflow

Enhanced Geothermal Systems (EGS) R&D, Demonstrations and Underground Field Observatory
- New techniques and technologies

Non-Technical Barriers
- Regulatory
- Financial/Commercial

Project Synergies
- Co-Production and Distributed Power
- Strategic Materials
Geothermal Program Balance

Transition from Near to Long Term

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Timeline</th>
<th>Low Temp</th>
<th>Co-Production</th>
<th>Blind Hydrothermal</th>
<th>In-Field EGS</th>
<th>Greenfield EGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilize waste-heat / promote distributed energy</td>
<td>Near Term</td>
<td>Near Term</td>
<td>Near to Intermediate</td>
<td>Near to Intermediate</td>
<td>Long Term</td>
<td>Develop replicable model for commercial scale-up</td>
</tr>
<tr>
<td>Leverage O&G infrastructure</td>
<td>Near Term</td>
<td>10's-100's MW, aggregate to GW potential</td>
<td>10's GW additional potential</td>
<td>100's MW- GW's potential - low risk</td>
<td>10's - 100's GW potential - high risk</td>
<td></td>
</tr>
<tr>
<td>Growing Interest, New Potential Sector</td>
<td>Near Term</td>
<td>10's-100's MW, aggregate to GW potential</td>
<td>10's GW additional potential</td>
<td>100's MW- GW's potential - low risk</td>
<td>10's - 100's GW potential - high risk</td>
<td></td>
</tr>
<tr>
<td>Majority of the Private Sector</td>
<td>Near to Intermediate</td>
<td>10's GW additional potential</td>
<td>100's MW- GW's potential - low risk</td>
<td>Private Sector, very few companies to date</td>
<td>High potential for growth and new entrants resulting from EGS Field Lab</td>
<td></td>
</tr>
<tr>
<td>Local or Rural, Direct Use</td>
<td>Near Term</td>
<td>10's-100's MW, aggregate to GW potential</td>
<td>10's GW additional potential</td>
<td>100's MW- GW's potential - low risk</td>
<td>10's - 100's GW potential - high risk</td>
<td></td>
</tr>
<tr>
<td>Growing Interest, New Potential Sector</td>
<td>Near Term</td>
<td>10's-100's MW, aggregate to GW potential</td>
<td>10's GW additional potential</td>
<td>100's MW- GW's potential - low risk</td>
<td>10's - 100's GW potential - high risk</td>
<td></td>
</tr>
</tbody>
</table>

GTO Operational Space

Energy Efficiency & Renewable Energy
Geothermal power plants brought online/expanded in 2012-13 (154 MW)

- San Emidio Expansion
 U.S. Geothermal (12.75 MW)

- Florida Canyon Mine
 Electratherm (0.1 MW)

- Tuscarora Power Plant
 Ormat (18 MW)

- Beowawe Power Plant
 Terra-Gen (1.9 MW)

- Dixie Valley I Power Plant
 Terra-Gen (6.2 MW)

- Hudson Ranch Plant
 Energy Source (49.9 MW)

- McGinness Hills Power Plant
 Ormat (30 MW)

- Puna Plant Expansion
 Ormat (8 MW)

Nevada: 68.95 MW
California: 49.9 MW
Oregon: 28 MW
Geothermal Projects
Phase III and IV Development

Developers*

- CalEnergy
- Chena Hot Springs
- Cyrq Energy
- ElectraTherm
- Enel North America
- Gradient Resources
- Kodali, Inc.
- OIT
- Ormat Technologies
- Ram Power, Inc.
- Surprise Valley Electric
- Terra-Gen
- U.S. Geothermal

*Nevada Developers in bold.

SOURCE:

Phase III
~750 MW
(Planned Capacity Addition)

Phase IV
~200 MW
(Planned Capacity Addition)

Phase III: Permitting and Initial Development
Phase IV: Resource Production and Power Plant Construction
US Geothermal Potential by 2030
Pathway to Growth

- **EGS**
 -
P95 7.9 GWe
 - mean 9 GWe
 - P5 3.7 GWe

- **Hydrothermal**
 -
P95 16 GWe
 - mean 10 GWe
 - P5 7.9 GWe

- **Coproduced**
 -
P95 30 GWe
 - mean 30 GWe
 - P5 7.9 GWe

- **Existing Capacity**

<table>
<thead>
<tr>
<th>Year</th>
<th>Installed Capacity (GWe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>1.0</td>
</tr>
<tr>
<td>2009</td>
<td>1.5</td>
</tr>
<tr>
<td>2012</td>
<td>2.0</td>
</tr>
<tr>
<td>2015</td>
<td>2.5</td>
</tr>
<tr>
<td>2018</td>
<td>3.0</td>
</tr>
<tr>
<td>2021</td>
<td>3.5</td>
</tr>
<tr>
<td>2024</td>
<td>4.0</td>
</tr>
<tr>
<td>2027</td>
<td>4.5</td>
</tr>
<tr>
<td>2030</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Program Focus
- **In the pipeline**
 - Discovery Phase (GEA)
 - Confirmation Phase (GEA)
 - Power Plant Construction Phase (GEA)

Pathway to Growth
- **Existing Capacity**
 - **EGS**
 - **Blind Hydrothermal**
 - **Coproduced**

Installed Capacity (GWe)
- 0 to 35

Resource Potential (GW)
- 0 to 1000

Technology Headroom
- P95 7.9 GWe
- mean 9 GWe
- P5 3.7 GWe

Undiscovered Hydrothermal
- P95 16 GWe
- mean 10 GWe
- P5 7.9 GWe

Identified Resources
- P95 30 GWe
- mean 30 GWe
- P5 7.9 GWe

From USGS, 2008
EERE’s 5 Core Questions
Where and How Does The R&D Fit?

1. **High Impact**

2. **Additionality**

3. **Openness**

4. **Enduring Economic Benefit**

5. **Proper Role of Government**
Geothermal Office Investment Synergies

R&D Successes in One Area Multiply to Other Programs

Systems Analysis

- Tracers and interpretation
- Well completions
- High temperature tools and sensors
- Remote sensing
- Performance monitoring
- Geochemistry
- Efficient cooling
- Power plant demonstrations
- Imaging and modeling fluid flow
- Bit design
- Microseismic analysis
- Stress measurement and characterization
- Regulatory streamlining

Hydrothermal

- Coproduction demos

Low Temp

- Working fluids

EGS

- Rock stimulation technologies
- EGS demos

NGDS

- Workforce and education
- Levelized cost of electricity
- International
Economic Analysis Drives R&D Priorities

Drilling, Project Size – Risk and Costs

Need combined improvements and efficiencies
Low-Temperature:
- **Beowawe Power**: Beowawe, NV – 2.5 MW added
- **TerraGen Sierra Holdings**: Dixie Valley, NV – 6 MW online

Co-Production:
- **Simbol Materials**: Lithium extraction plant groundbreaking expected 2013
- Deploying two binary systems in operating O&G fields.

Hydrothermal:
- ~150+ MW of new hydrothermal capacity
- 26 wells drilled to date

EGS Demonstrations:
- **IN-FIELD**: Ormat: Desert Peak, NV – 1.7 MW
- **NEAR-FIELD**: Calpine: The Geysers, CA - 5 MW
- **GREENFIELD**: AltaRock: Newberry, OR

Cross-Cutting Research & Development:
- **CSI Technologies /AltaRock** - Diverters
- **Baker Hughes** – Ultrasonic Fracture Imager
- **Sandia National Lab** – PDC Bits
Recent Project Successes
Low Temperature Portfolio

Beowawe Power, LLC

- Funding Source: ARRA
 - DOE Funds: $2M
 - Awardee Cost Share: $2.4M
- Completed construction in 2011 of a binary power plant
- Plant came online in the Spring of 2011 producing 2.5 MW gross

Terra-Gen Sierra Holdings, LLC (Dixie Valley)

- Funding Source: ARRA
 - DOE Funds: $2M
 - Awardee Cost Share: $13.4M
- Binary Power Plant online and producing 6 MW gross since September 2012
- Unit has operated over 500 hours as of November 2012

Completed Beowawe Power Plant (Photo credit: TG)

Image by Google Maps
What’s next for Hydrothermal?
Tools, Maps, Analysis, “Plays”

- Continue to advance Innovative Exploration Technologies (IET) and demonstrations

- New drilling and measurement technologies

- Play fairway analysis (borrowed from oil and gas); observational, analytical integration, interpretation, basin and systems evolution

Favorable structural settings and setting types for geothermal systems (Faulds et al., 2011)

Source: CNSOPB, Nova Scotia
Oil and gas uses “facies” routinely to describe geologic settings in the subsurface – *standard practice*

Not yet done routinely in geothermal; critical path towards describing “flow units” and like-kind reservoir units.

Will allow large scale reservoir and resource characterization and upside definition.
Core Program Focus
EGS Demonstration Projects

<table>
<thead>
<tr>
<th>Performer</th>
<th>Project Site</th>
<th>Site Information</th>
<th>Stimulation Timeline</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ormat Technologies Inc.</td>
<td>Desert Peak, NV</td>
<td>Adjacent to existing hydrothermal sites</td>
<td>Successful stimulation – commercial, grid-connected, 1.7 MWe</td>
<td>$ 4.3 M</td>
</tr>
<tr>
<td>Geysers Power Company, LLC</td>
<td>The Geysers, CA</td>
<td>Reopen two existing wells to deepen for injection and stimulation</td>
<td>Successful stimulation, 5 MWe scale</td>
<td>$ 6.2 M</td>
</tr>
<tr>
<td>University of Utah</td>
<td>Raft River, ID</td>
<td>Improve the performance of the existing Raft River geothermal field</td>
<td>FY13 stimulation</td>
<td>$ 8.9 M</td>
</tr>
<tr>
<td>Ormat Technologies Inc.</td>
<td>Bradys Hot Springs, NV</td>
<td>Improve the performance of the existing Brady’s geothermal field</td>
<td>FY13 stimulation</td>
<td>$ 3.4 M</td>
</tr>
<tr>
<td>AltaRock Energy Inc.</td>
<td>Newberry Volcano, OR</td>
<td>High potential in an area without existing geothermal development</td>
<td>Successful stimulation</td>
<td>$ 21.4 M</td>
</tr>
<tr>
<td>NakNek Electric Association</td>
<td>NakNek, AK</td>
<td>Located in remote location in Alaska without existing geothermal development</td>
<td>Project closeout</td>
<td>$ 12.4 M</td>
</tr>
</tbody>
</table>
What is EGS?

EGS technologies will allow us to tap geothermal resources – 100+ GWe, or enough to power 100 million homes – that would be otherwise inaccessible.

EGS can capture power from anywhere there is sufficiently hot rock, exponentially increasing the reach of geothermal development in the U.S.
Ormat Technologies’ Desert Peak-2 EGS project successfully supplied 1.7 MW electricity to the grid – a first-in-the-nation achievement.

DOE invested $5.4 million, with a private costshare of $2.6 million.

Desert Peak represents a near-term opportunity to develop EGS at lower cost and risk; potential for reserve additions at highly competitive costs.

Pathway to larger, more complex and more challenging R&D efforts.

“DOE’s Geothermal Technologies Office is changing geothermal development in the U.S.”

Lucien Bronicki, Ormat Founder and Chief Technology Officer (4/2013)

– Yahoo: Stockwatch

“'If we can go to all the hundred or thousands of wells that are unproductive and tinker with them to make them productive, this is a game changer.’”

Paul Thomsen, Director of Policy and Business Development at Ormat – MIT Technology Review, 4/2013
Enhanced Geothermal Systems (EGS)

Facies Concept – A Continuum

Greenfield:
No existing geothermal development or infrastructure

In-Field
Located within an unproductive portion of an operational hydrothermal field

Near Field/Field Extension
On the margins of existing hydrothermal fields
OUR VISION:

Increased success at Demo projects

Near-term use at existing fields as reservoir enhancement tool

1. Widespread deployment to ensure resource and reserve growth
2. Recognition by investment community of low risk and large opportunity

Preparedness - strategy, funding, oversight
Snapshot of U.S. Efforts in EGS

EERE-funded demonstration projects showing excellent results

AltaRock - Newberry Volcano
Stimulation completed Winter 2013
Analysis in progress

Raft River
Stimulation scheduled for early summer

Bradys
Stimulation in progress

The Geysers
- Volume
- Flow rate
- Power Gen.

Desert Peak
- Volume
- Flow rate
- Power Gen.

Successful demonstrations on the pathway to broader commercial adoption
Current Global EGS Landscape

- **Newberry Volcano**
 - Bend, Oregon
 - AltaRock Energy/DOE

- **1.5 MW KiGam**
 - Pohang Field
 - South Korea

- **1 MW Habanero Pilot EGS**
 - Cooper Basin, Australia

- **4 MW Insheim**
 - Insheim, Germany

- **5 MW The Geysers**
 - Middletown, California
 - Calpine Corporation/DOE

- **1.5 MW Soultz**
 - Kutzenhausen, France

- **1.7 MW Desert Peak**
 - Churchill County, Nevada
 - Ormat/DOE

- **RAFT RIVER**
 - Raft River, Idaho
 - University of Utah/DOE

- **2.9 MWe/3 MWt Landau**
 - Landau in der Pfalz
 - Germany

- **24 MWt ECOGI**
 - Buntsandstein
 - Germany

- **1 MW Habanero**
 - Cooper Basin
 - Australia

United States

France

S Korea

Australia

Commercial

Demonstration

Under Development

Announced
Key Barriers to EGS Development
Technology and Engineering Needs

<table>
<thead>
<tr>
<th>Technology Barriers</th>
<th>Potential Solution Set</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir Access</td>
<td>Hard/Hot-rock drilling, completion technologies</td>
<td>EGS Success</td>
</tr>
<tr>
<td>New well geometries and concepts, optimized drilling</td>
<td></td>
<td>Game-changers</td>
</tr>
<tr>
<td>Reservoir Creation</td>
<td>Horizontal wells – a first for geothermal</td>
<td></td>
</tr>
<tr>
<td>Characterize local stress, zonal isolation, novel fracturing methods, increase fractured volume per well</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Productivity</td>
<td>Rotary steering</td>
<td></td>
</tr>
<tr>
<td>Increase flow rates without excessive pressure needs or flow localization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td>Smart tracers</td>
<td></td>
</tr>
<tr>
<td>Maintain productivity with minimal thermal drawdown and water losses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress-field diagnostics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonal Isolation</td>
<td>High-T sensors</td>
<td></td>
</tr>
<tr>
<td>Cross-well monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diverter technologies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hard/Hot-rock drilling, completion technologies
Horizontal wells – a first for geothermal
Rotary steering
Smart tracers
High-T sensors
Cross-well monitoring
Diverter technologies
Game-changers
R&D Pathway

EGS R&D Pathway

Needs and Opportunities

<table>
<thead>
<tr>
<th>R&D Needs and Opportunities</th>
<th>In- to Near-Field EGS</th>
<th>EGS Field Lab</th>
<th>Industry Uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline</td>
<td>Near to Intermediate</td>
<td>Near to Intermediate</td>
<td>Intermediate to Long Term</td>
</tr>
<tr>
<td>R&D Needs and Opportunities</td>
<td>Thermal Stimulations</td>
<td>First Horizontal Geothermal Wells</td>
<td>Reduced Risk from EGS Field Lab Methodology</td>
</tr>
<tr>
<td></td>
<td>High-Temperature Thermally-Degradable Packers</td>
<td>Advanced Stimulation Methods</td>
<td>New Partnerships</td>
</tr>
<tr>
<td></td>
<td>Multi-Stage Vertical-Well Stimulations</td>
<td>Multi-Stage Lateral Stimulations</td>
<td>Streamline Permitting and Fundability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Subsurface Imaging Tech</td>
<td>Optimize Productivity and Operational Controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New International, Inter-Agency, and O&G Collaborations</td>
<td></td>
</tr>
</tbody>
</table>
Low Risk: Testing of downhole tools, monitoring systems, etc.

Medium Risk: Testing of new drilling systems, chemical diverters, etc.

High Risk: Testing of potentially "destructive" well stimulation techniques

Examples: energetic well stimulation, testing which could lose part of the wellbore, stimulation which could alter a significant volume of the subsurface reservoir

Innovative Solutions

1. Faster, More Efficient Drilling Technologies

2. Advanced Downhole R&D

3. Measurement / Assessment Tools

4. Seismic Modeling, Monitoring & Protocols
WHY?
Promote transformative science and engineering to:
- Address key barriers
- Validate and optimize EGS technology
- Ensure deep understanding and reproducibility for commercial scale-up

Federal Role:
- Test technologies/take technical risks not possible in private sector
- Aggressive timeframe
- Gather and disseminate comprehensive data sets

TECHNICAL CHALLENGES
- **Reservoir Access**
 - New well geometries and concepts, optimized drilling
- **Reservoir Creation**
 - Characterize local stress, zonal isolation, increase fractured volume per well
- **Productivity**
 - Increase flow rates without excessive pressure needs or flow localization
- **Sustainability**
 - Maintain productivity with minimal thermal drawdown and water losses

FY13
- Pre-conceptual Planning

FY14
- Conceptual Design
- Preliminary Design
- Final Design
- Site Characterization

FY15-19
- RD&D/Operations
- Closeout
EGS Field Lab
What does success look like?

1. **Subsurface “Roadmap”**
 - Fundamental understanding of how to create large-scale subsurface heat exchange systems
 - Reproducible in different geologic settings
 - Sustainable

2. **Successfully test new technologies in controlled environment**
 - Demonstration of path to lower costs
 - Select highest performing/most reliable methods and tools

3. **Data Sharing**
 - Capture of high-fidelity information and measurements
 - Immediate distribution to both public and private sector stakeholders

4. **Increased private investor funding due to lower risk and costs**
 - Lower financing costs as well
 - Major opportunity for new entrants into the industry

5. **Global leadership in a new renewable energy sector – with expectation of accelerated domestic and international adoption of EGS**

Commercial pathway to EGS well productivity and large-scale power and direct use – becoming more broadly distributed throughout the country, beyond the western US
Future GTO Initiatives/Focus Areas

Enhanced Geothermal Systems
- EGS Field Observatory
- Advance down-hole R&D
- Characterization/Assessment tools

Hydrothermal
- Play Fairway Analysis/Mapping
- Advancing horizontal drilling technologies, high temperature tools
- Leverage oil and gas technologies

Low Temp/Coproduced
- Strategic materials
- Co-production and binary unit growth
- Direct Use and Distributed Energy
- Sedimentary systems

Systems Analysis
- Completion of Regulatory Roadmap, streamlining
- National Geothermal Data System (NGDS) deployment
• **EGS Demonstration Successes:**
 – Will accelerate industry adoption - will be seen as predictable, low risk and highly fundable
 – EGS Field Lab (FORGE) a major opportunity for multi-partner participation, R&D advances and sector transformation

• **Hydrothermal:**
 – New drilling technologies, new geophysical and exploration techniques and play fairway maps will lower risk and cost

• **Low Temperature:**
 – Co-Production success will drive adoption by oil and gas, and contribute to broader use of direct use and distributed energy

All highly transferable to international sites and opportunities

Global partnerships, collaboration, data sharing
Pathway to Transformative Change

US Shale Gas: Technology Innovations Spawned Sector Transformation

Potential for similar impact in Geothermal using broadly comparable technologies

Sources: Lippman Consulting, Inc. 2011. Technology advances from King, 2012 (SPE 152596)