

Asia-Pacific Economic Cooperation Department of Alternative Energy Development and Efficiency MINISTRY OF ENERGY

The 43rd NEW AND RENEWABLE ENERGY TECHNOLOGIES EXPERT GROUP MEETING (43rd EGNRET Meeting)

Overview of Renewable Energy in Thailand

By Munlika Sompranon Director of Energy Cooperation Group, DEDE, Thailand 12 – 14 November 2014 Chiang Mai, Thailand

Thailand's Energy Situation

Final Energy Consumption 2013

Source : Ministry of Energy 2013

The transportation and industrial segments account for 72% of Thailand's energy consumption

Thailand final energy consumption by industry, 2009-2013 *Ktoe*

- Since 2009, the industrial sector has overtaken the transportation sector as the largest source of demand
- Commercial sector is second smallest but fastest growing
- Industry and transportation both account for ~ 36% of total energy consumption

Energy consumption has been growing at 2.4% per year; renewable account for >10% of consumption

Thailand final energy consumption, 2009-2013 *Ktoe*

- Since 2009, final energy consumption has been growing by ~2.4% per year
- In 2013, renewables accounted for a total of 8,232 ktoe of consumption, or ~11%
- 5,278 ktoe direct
- 1,612 ktoe fuel
- 1,342 ktoe
 converted
 electricity

Energy Development and Efficiency MINISTRY OF ENERGY

Import Electricity form neighbors

Thailand's Energy Challenges

- □ Increased and fluctuated world oil price
- ❑ Limited petroleum reserved
 - \rightarrow needs to import 85 % of supply
- **70%** of electricity supply depends on Natural Gas
- Lacking of public agreement on Energy projects
- Energy Subsidies

□ Green House Gas Emission from energy sector

Renewable Energy Development

The Alternative Energy Development Plan is the current roadmap for renewable energy development targets

Reference : DEDE, 15 Sep 2014

^{กรมพัฒนาพลังงานทดแทน} Ideas of Revising Alternative Energy Development Plan และอนุรักษ์พลังงาน กระทรวงพลังงาน (2015-2036)

Forecasting data of total energy consumption from EPPO

Manage a distribution system of RE by considering area based factors such as; -Distribution system potential - transmission line - RE potential in the area - Priority of RE types (Merit order system) using Levelized

Cost of Electricity Model (LCOE) Heat

Manage RE heat production - Using potential of fossil fuel substitution in each area Increase bioenergy production in transportation sector (keep balance between energy production and consumption)

Bioenergy

Renewable energy class detail: *Wind*

Current development progress

Power generation development

MW installed capacity

Development initiatives

- Promote community scale usage
- Promote R&D on wind turbine design

Sample Sites

- 2007 : 5 kw Low-speed wind turbine technology, Pathumthani
- 2010 : Wind turbine for electricity generator size 2 and 5 kW., Huasai, Nakornsrithummarat
- 2011 : Small grid-connected electric generator control system
- 2013 Study and Testing efficiency of wind turbine in producing 100% domestic electricity

Renewable energy class detail: Small Hydro

Current development progress

Power generation development

MW installed capacity

Development initiatives

• Support construction of hydropower at a community level

Very small power plant Non-electrified household (Off-Grid)

DEDE & EGAT develop small hydro power system of downstream irrigation dam

Small hydro power plant Local Admin Organization/people collaboration \longrightarrow project owner

Renewable energy class detail: *Biomass*

Current development progress

Power generation development

MW installed capacity

Development initiatives

- Promote plantation of fast growing trees that can be used as feedstock for power/heat generation
- Develop production and standard of biomass pellets for future biomass fuel
- Develop advanced gasifier and gas engine technology as well as biomass-to-liquid (BTL) technology
- Promote use of high pressure boilers to improve efficiency of power generation from biomass
- Promote Distributed Green Generation (DSG)
 community level biomass energy
- Coordinate with EGAT to develop necessary transmission and distribution infrastructure

Renewable energy class detail:

Biogas

Current development progress

Power generation development

MW installed capacity

Development initiatives

- Promote and support biogas production at a household level
- Support community self-management of biogas assets
- Study biogas production from alternative feedstock sources
- Promote production and utilization of compressed bio-methane gas (CBG) from biomass and energy crops for transportation and power generation
- Study and develop regulations for biogas safety standards
- Conduct public relations to disseminate knowledge and news to help build public image of safe biogas usage

Renewable energy class detail: New Energy

- **2021 Target:** 1 MW
- Utilize pilot project data to assess further development

Renewable energy class detail: *Bioethanol*

Current development progress

Fuel usage development

ML/day

Development initiatives

 Continue to increase the share of "Gasohol" on the market (current share, including E10, E20, and E84 is 92%)

Renewable energy class detail: *Biodiesel*

Current development progress

Fuel usage development

ML/day 7.2 37.5% 40.3% 41.79 3.0 2.9 2.7 2012 2013 2014 (Q1) 2021 Target

Development initiatives

- Promote growing palm trees in sustainable areas not competing with food crops
- Develop **alternative energy crops** for the production of biodiesel equivalents (details on next page)
- Increase production capacity of crude palm oil

Renewable energy class detail: Second generation biofuels

The Ministry of Energy employs several tools to incentivize renewable energy development

ADDER premiums and Feed-in-Tariffs support economically attractive renewable development

[ADDER (Baht/kWh) VSPP SPP	ADDER (US Cents/kWh) VSPP SPP	Special ADDER (THB/kWh)	Supporting Period (yrs)
Biomass up to 1 MW -> over 1 MW ->	 0.50 Bidding 0.30 Bidding 	 1.56 Bidding 0.94 Bidding 	1.001.00	• 7 • 7
Biogas up to 1 MW -> over 1 MW ->	 0.50 Bidding 0.30 Bidding 	 1.56 Bidding 0.94 Bidding 	1.001.00	• 7 • 7
Waste AD & LFG -> Thermal ->	• 2.50 • 2.50 • 3.50 • 3.50	• 7.81 • 7.81 • 10.9 • 10.9	1.001.00	• 7 • 7
Wind Power up to 50 kW -> over 50 kW ->	• 4.50 • 3.50 • 3.50	• 14.1 • 10.9 • 10.9	• 1.50 • 1.50	• 10 • 10
Small Hydro up to 200 kW -> 50 to 200 kW ->	• 0.80 • None • 1.50 • None	• 2.50 • None • 4.69 • None	1.001.00	• 7 • 7
Solar	 Varies – detail on next page 	 Varies – detail on next page 	• 1.50	• 25

ESCO fund lowers cost of capital and other economic barriers for renewable developers

- DEDE has also developed an ESCO fund to de-risk and encourage investment in renewable focused ventures
- Fund pools capital from the Thai government's ENCON fund with capital from private investors
- In addition to capital funding, ESCO fund provides access to low cost equipment leasing
- Thus far, the ESCO fund has invested a total of 6.1 BN THB (510 MM THB from govt., remainder from private sources) in 54 separate projects accounting for a total energy savings of 1.1 BN THB

Introduction to Site Visit

R.P.M. Farm and Feed Co., Ltd

- Animal feed producers , Livestock Production, Further Processing and Trading
- Construct CMU-CD-(Chiang Mai University Channel Digester) for producing biogas 1,000 cubic meter from livestock wastewater
- Biogas production capacity 600 cubic meter per day
- Electric production capacity 9,240 kwh per month
- CBG 384 kg per day

Showcase "Mae Kam Pong"

Mae Kam Pong Electric Project

 \succ National Policy in 1980 , aims to extend the use of electricity in rural area

- ➤ 1,300 m. than MSL with 23.5 sq.km.
- Iocated far from grid system distribution
- In 1982 , DEDE started micro hydro project
- site 1 = 20 kw
- " Small water resource =
- site 2 = 20 kw The cheapest energy resource "

Showcase "Mae Kam Pong"

Mae Kam Pong Electric Project

- > In 1994-2003 => increase capacity in the area to site 3 with 40 kw
- Managed by local cooperatives => one time charge payment

➢ In 1995, Electricity from PEA grid system came into "Mae Kam Pong" Area.

2 grid systems in area

- . Local micro hydro power
- 2. Grid connected power utility

Micro Hydro Power still operate

- => without interruption
- ✓ Strong unity of people in community
- ✓ Managing system
- ✓ Local rules & regulations
- ✓ Maintenance / Advise from DEDE

Thank you for your attention