The grid integration of renewables for filling the gap to reach the goal of doubling renewable energy in the APEC Region

Anil Pahwa

Professor and Logan-Fetterhoof Chair Electrical and Computer Engineering Kansas State University

Workshop on Filling the Gap to Reach the Goal of Doubling Renewable Energy in the APEC Region March 27-28, 2017 Jeju, Republic of Korea

EWG 05 – 2015A: Workshop on experiences and plans to double renewable energy utilization by 2030 in the APEC region

Daegu, Republic of Korea, November 10 – 11 2015

- Currents trends and barriers: policy, technical, and social to advancing renewable energy
- Opportunities and strategies for strengthening renewable energy implementation: emerging technologies, innovative financing, public-private partnership, and business strategies
- Best practices for advancing renewable energy: training for capacity building, reducing soft costs, resources for information sharing, and stakeholder engagement
- Guidelines for economies to prepare a roadmap to double renewable in the energy mix by 2030.

Workshop Agenda

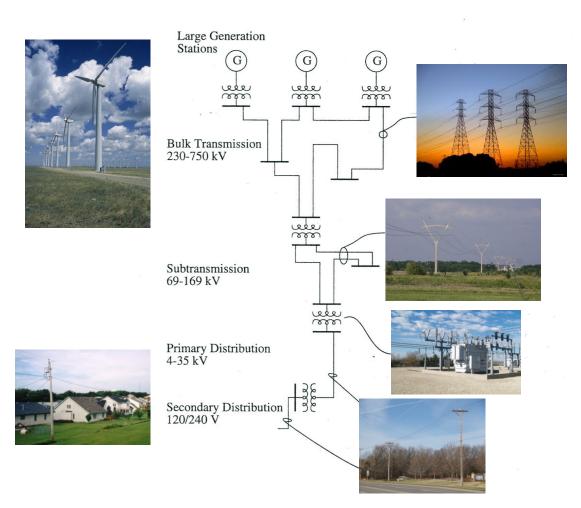
- Presentations by experts on global projections for renewable energy, projections and consequences for the APEC region, system integration and flexibility issues, renewable energy for buildings, and green technologies
- Experiences and plans by delegates from Korea, China, Chinese Taipei, Japan, Malaysia, Papua New Guinea, Peru, Philippines, Thailand, and Vietnam
- Breakout Sessions: Brainstorming to define a pathway for the future

Top Five Issues for the future with number of votes

- 1. Education, training, collaboration, and information exchange (24)
 - Education and training (10)
 - Encourage international and interregional information exchange (7)
 - APERC could work on reporting of progress towards RE goals (4)
 - More collaboration among different APEC working groups (3)
- 2. Policies (23)
 - Keep policymakers informed (7)
 - Policies unstable or lacking (7)
 - Classification of doubling RE targets by sector is needed (4)
 - Renewable are not a priority (3)
 - More coordinated approach to achieving doubling RE goal (2)

Top Five Issues for the future with number of votes

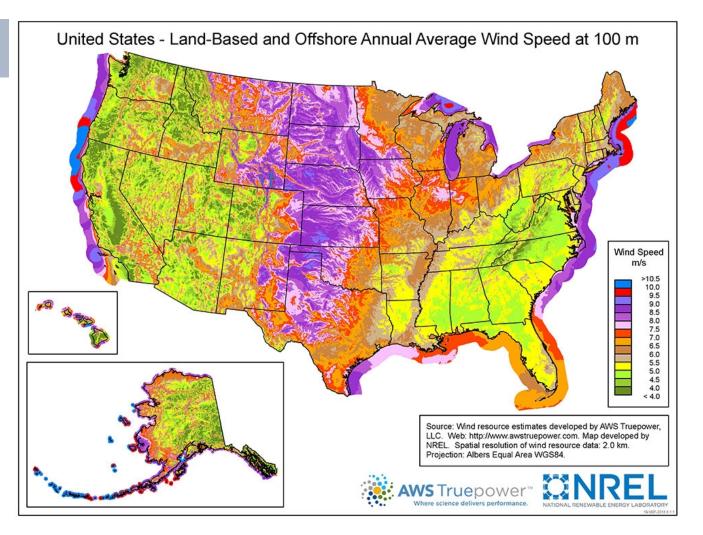
3. Market reforms (18)

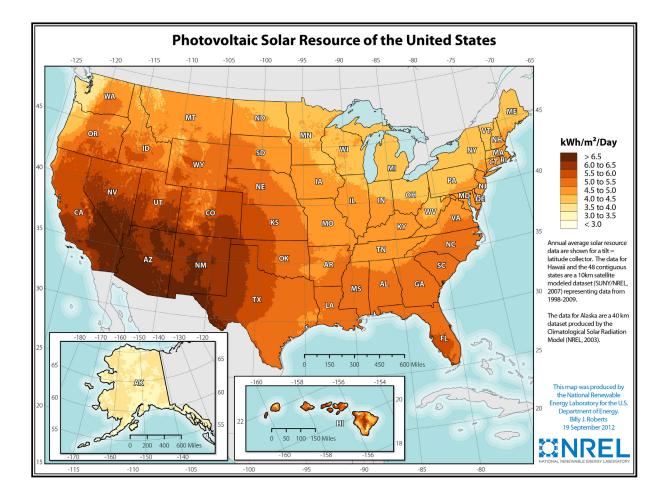

- Cost of renewable energy for developers and consumers (9)
- Subsidy removal in the electricity market (8)
- Foothold of fossil fuels industry (1)

4. Technology (13)

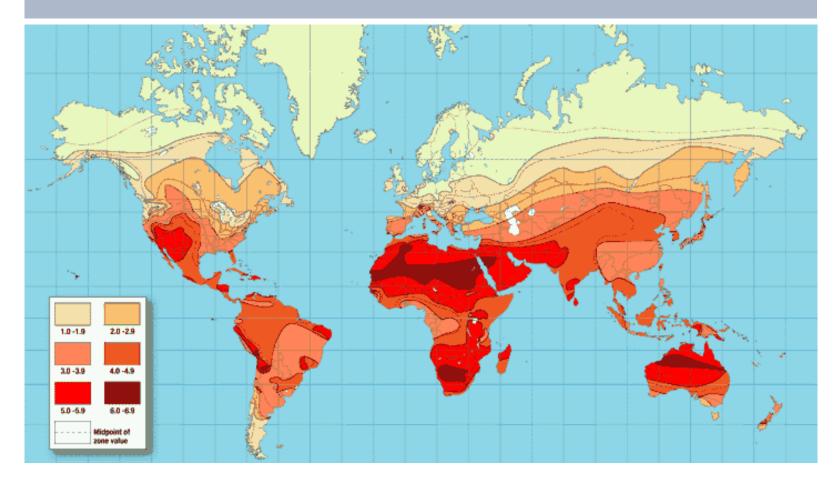
- Leverage advances in smart grid and energy storage (6)
- Integration of RE both in buildings and the grid is challenging (3)
- Maintain compliant and licensed service providers (3)
- Lengthening local manufacturing chain (1)
- 5. Strategic and innovative financing(7)
 - Creating bankable projects (4)
 - Eliminate upfront costs (3)

Link to the full report: <u>http://publications.apec.org/publication-detail.php?pub_id=1752</u>



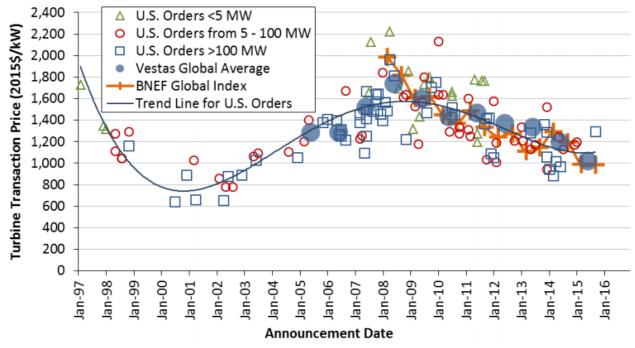


Factors Affecting Grid Integration of Renewable Generation


- Geography Availability of resources
- Cost
- Capacity Factor
- Grid Access Points of interconnection
- Market and Subsidies
- Dispatchability Cannot be dispatched like fossil resources
- Intermittency Fluctuations
- Regulation
- Tariffs

Geography

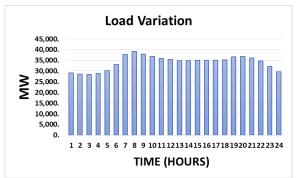
Solar Irradiance

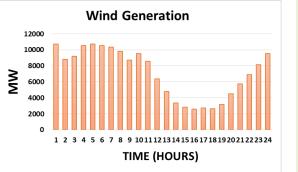


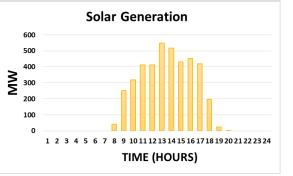
Cost Comparison (unsubsidized)

Energy Source	Capital Cost (\$/kW)	Levelized Cost of Energy (\$/MWh)
Wind	1250 - 1700	32 - 62
Rooftop Solar	2000 - 3750	88 - 222
Utility Solar	1300 - 1450	49 - 92
Combined Cycle Natural Gas	1000 - 1300	48 - 78
Coal	3000 - 8400	60 -143

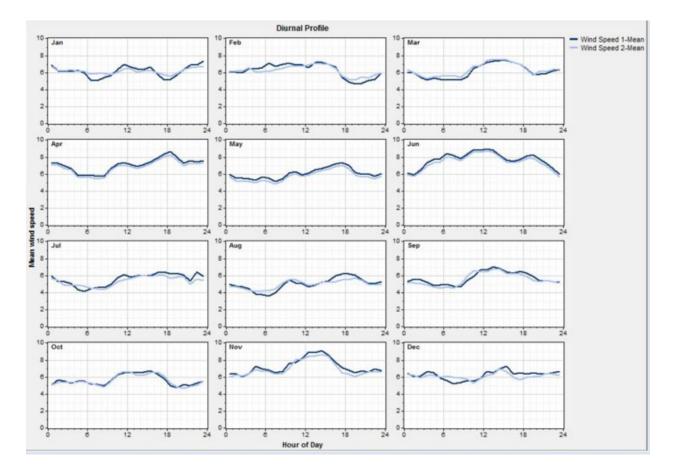
Source: LAZARD'S Levelized Cost of Energy Analysis Version 10.0 December 2016.


Wind Turbine Prices Remained Well Below the Levels Seen Several Years Ago




Recent turbine orders reportedly in the range of \$850-1,250/kW

Cost



Typical Load and Renewable Generation in Winter (a site in Texas - ERCOT)

Observations

- Load is higher during the day
- Wind generation is higher during night (not always)
- Peak of wind generation does not coincide with the peak load duration
- Peak of solar generation coincides with peak load duration
- Wind and solar generation are not dispatchable
- Both wind and solar generation can change drastically from one hour to the next
- Both wind and solar have low capacity factor: 30 to 45% for wind.
- Wind can cover a large percentage of load in the night

A site in Kansas

Grid Integration Challenges

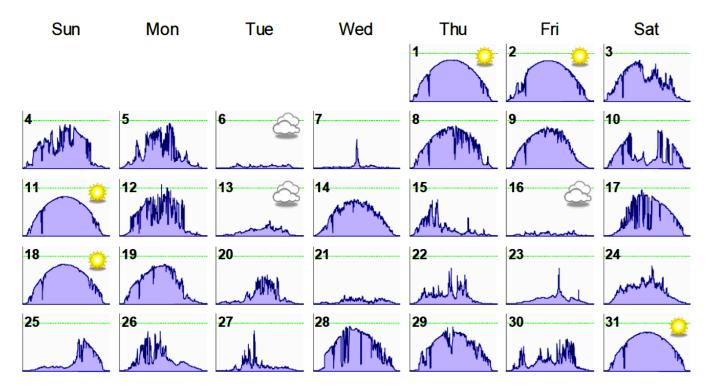
- Space availability
 - Agriculture can continue around wind farms. Source of income for farmers.
 - Utility scale solar needs exclusive real estate
- Grid connection
 - Extra cost to extend transmission system
- Lack of adequate transmission capacity
 - Kansas has huge wind energy potential, but lacks transmission lines
 - Wind curtailment when generation is very large as percentage of load (5 to 20% curtailment is possible)
- Ability to ramp up and down other generation to counter changes in renewable generation

Rooftop Solar

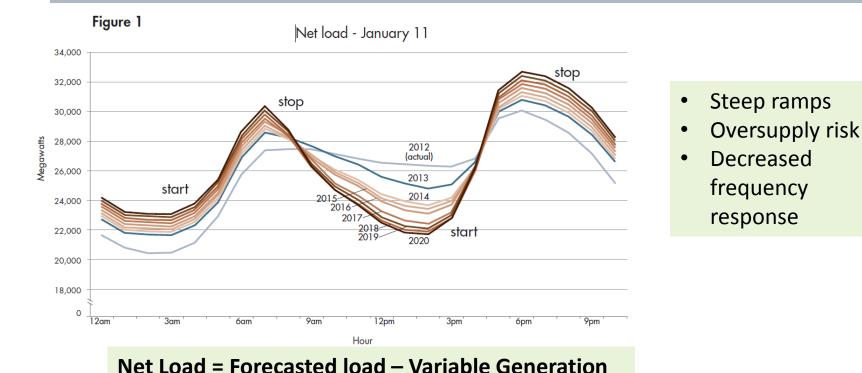
Motivation

- Regions with abundant sunshine Southwestern United States
- Regions with high cost of electricity California, Hawaii
- Subsidies
- Attractive tariffs
- Desire to be green

Ownership Options


- Customers
- Third party First Solar, Solar City
- Utility

Issues with Rooftop Solar


- Distribution systems not designed to handle large penetration – utilities use about 15% of peak load as a general guideline but it has not been proven by detailed analysis. Higher penetration is possible with proper planning and smart grid technology.
- Fluctuations in power and voltage due to intermittent clouds
- Reverse power flows into the grid
- Large power ramping needs during the morning and evening
 Hawaii
- Loss of revenues for utilities Some states require a monthly fixed fee to connect rooftop system to the grid Arizona

Solar Irradiance Variation

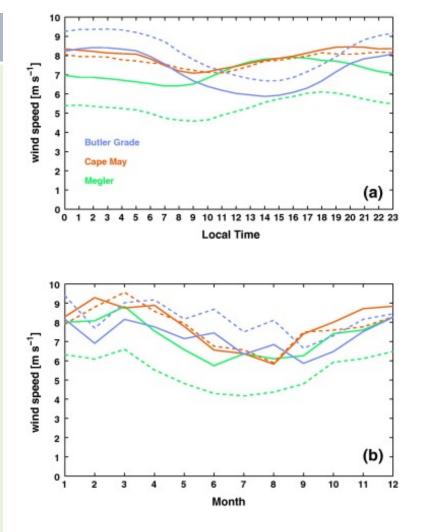
Source: K. Nicole, T. Key, C. Trueblood, "Distributed PV Monitoring: Highlights for PV Grid Integration Workshop", EPRI, Tucson, Arizona, 2012.

California ISO Duck Curve

Source: California ISO – Fast Facts: What the duck curve tells us about managing a green grid?, 2016. www.casio.com

Possible Remedies

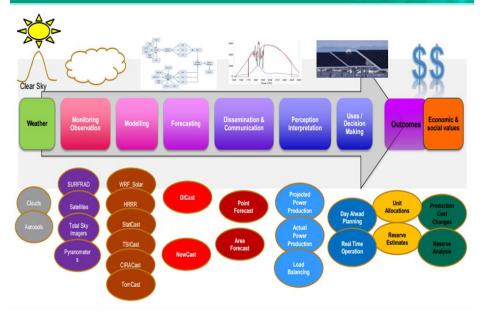
- Flexible Resource Capability
 - Upward and downward ramping
 - Ability to change direction quickly
 - Energy storage
 - Quick start
 - Start and stop multiple times in a day
- Coordination over a larger geographical area
 - Utilize resource diversity
- Better forecasting capabilities
 - Accurate forecasts of wind and solar energy availability allows better coordination with other resources
- Different rate designs to encourage higher use during mid-day
- Higher penetration of emerging loads electric vehicles
- Batteries and other energy storage devices


Wind Forecasting

- A complex science
- Example:

Caroline Draxl, Andrew Clifton, Bri-Mathias Hodge, Jim McCaa, **The Wind Integration National Dataset (WIND) Toolkit,** Applied Energy, Volume 151, 2015, 355–366

http://dx.doi.org/10.1016/j.apenergy.2015.03.121


- Modeled wind speed follows the pattern of observed cycles
- The difference in magnitude of wind speeds depends on the site
- Annual cycles of modeled and observed wind speeds show the same trend

Solar Forecasting

A Public-Private-Academic Partnership to Advance Solar Power Forecasting

Sue Ellen Haupt & Sheldon Drobo National Center for Atmospheric Research DE-FOA-0000649/DE-EE000601

B	MS				
AIX	IBM i	LINUX ON POWER	MAINFRAME		
Powe	er	BUSINESS STRATEGY	INFRASTRUCTURE	CASE STUDIES	SY STEMS MANAGEMENT

POWER > TRENDS > IBM RESEARCH

R&D

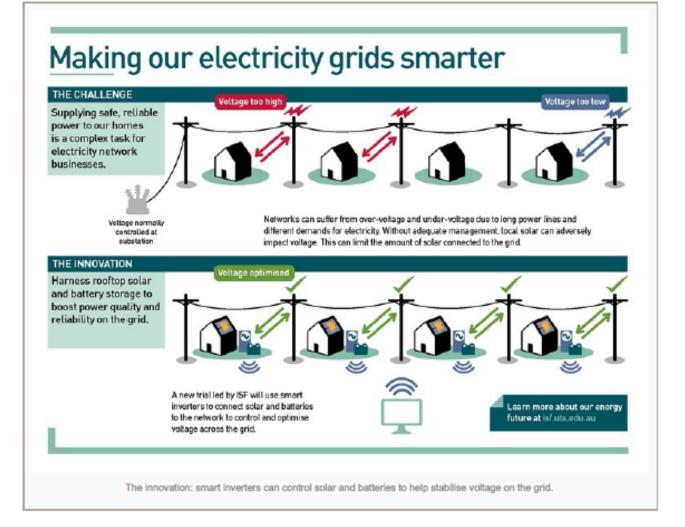
The Watt-Sun Program Is Poised to Improve Weather Forecasting for Solar Energy

August 2014 | by Jim Utsler

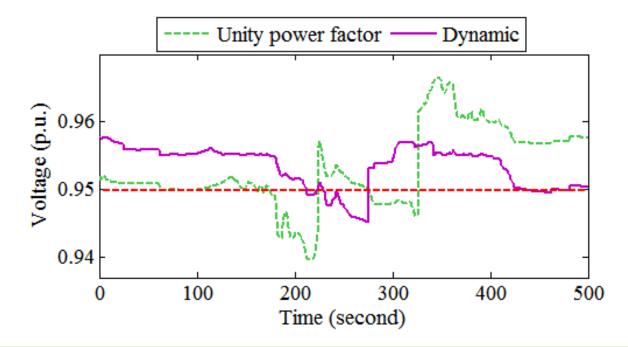
A 20 megawatt solar farm in Tucson, Arizona, is one of the test sites for Watt-Sun. Solar-power panels seem to be popping up on both residential 🛛 🖬 🔽 🕂 Print 🖴 🔁 5 and commercial rooftops like Morel mushrooms in the spring. And massive solar farms are being built in sun-friendly areas of the world. This is great news for renewable-energy proponents, who see solar-along with wind, waves and tides-as a way to wean the world off fossil fuels

Crisis, what crisis? How smart solar can protect our vulnerable power grids

reneweconomy.com.au/crisis-crisis-smart-solar-can-protect-vulnerable-power-grids-42584/

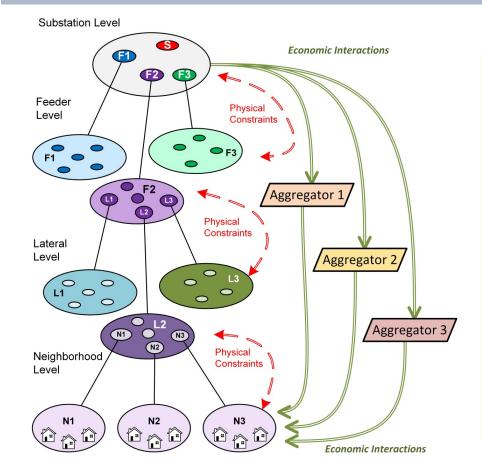

Lawrence McIntosh & Dani Alexander

2/7/2017


The Conversation

Solar panels can be both a headache and an opportunity for network companies. AAP Image/Tracey Nearmy

Dynamic Control with Smart Inverters



Source: A. Malekpour and A. Pahwa, "A Dynamic Operational Scheme for Residential PV Smart Inverters," *IEEE Transactions on Smart Grid*, 2016.

Regulation and Tariff

- Net Energy Metering (NEM) Buy and sell at the same rate (Retail)
 - Is it fair?
 - Loss of revenues for utilities
- Cost and maintenance of assets for transmitting and distributing electricity
 - Wholesale rate for buying energy
- Value of reliability for consumers
 - Monthly connection charge Arizona
- Proposed Changes in Time-of-Use Rates California
 - Move peak rate from "Noon to 6 pm" to "4 to 9 pm" or "5 to 10 pm"

Retail Market

Anil Pahwa, Sanjoy Das, Bala Natarajan, Scott DeLoach, Dan Andresen, Philip Gayle, M.Nazif Fagiry, Pavel Janovsky, Kumarsinh Jhala, Haitham Kanakri, Ahmad Khaled Zarabie, "Architecture for **Future Distribution Systems Including Active Consumers with Rooftop Solar Generation**," US National Science Project CNS – 1544705.

Conclusions

Grid Integration of Renewable Resources requires

- Appropriate siting of generation
 - Good potential for generation
 - Grid connection availability with strong transmission facilities
- Accurate wind and solar forecasting
- Dependence on flexible and agile resources
- Coordination over a larger geographical area
- Local and distributed control for rooftop solar
- Appropriate market conditions
- Compatible and fair rates for both consumers and utilities