APEC Workshop on Filling the Gap to Reach the Goal of Doubling Renewable Energy in the APEC Region

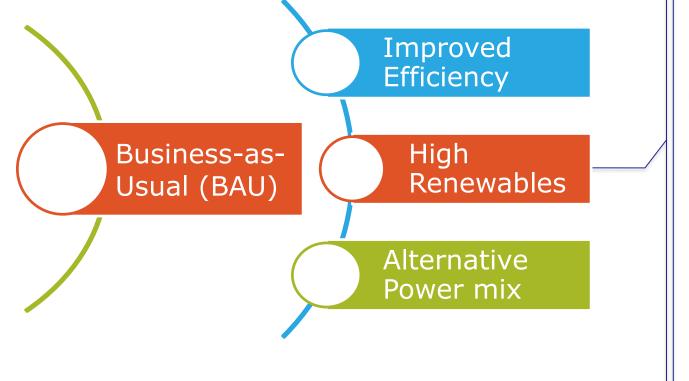
SESSION 3:

Renewable Power Modelling for APEC Energy Demand and Supply Outlook 6th Edition

Alexey KABALINSKIY Korea, Jeju 27-28 March, 2017

- Introduction
- Data collection
- Modelling Methodology
- Model assumptions
- Selected results
- ✓ Future work

Introduction


APEC EDSO 6th edition

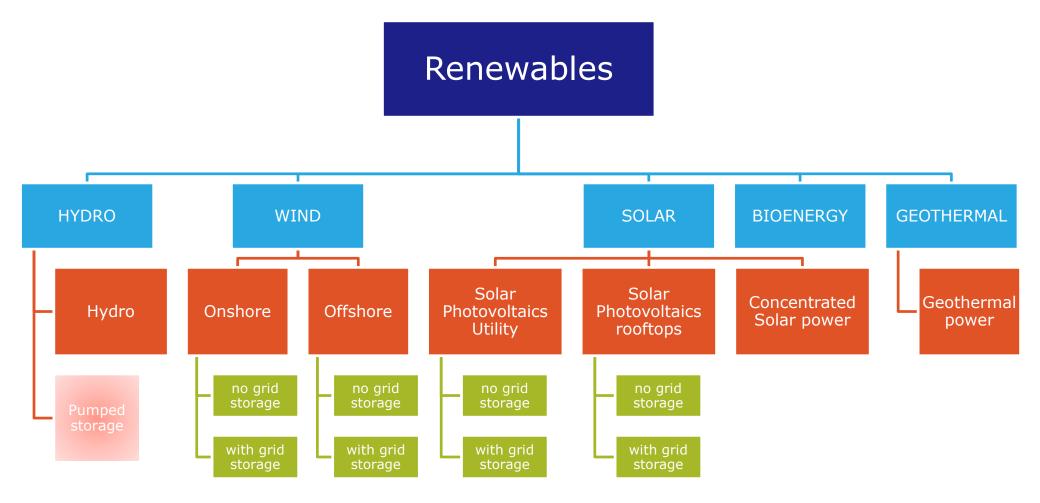
- Volume 1: APEC: sectoral view
- Volume 2: Economy Review

APEC EDSO 6th edition Scenarios framework

The APEC Leaders have introduced an aspirational goal of

"doubling the share of renewables in the APEC energy mix, including in power generation, from 2010 levels by 2030"

(Beijing Declaration, 2014)



BAU and High Renewables scenario comparison

	BAU	High RE			
Policies	Current policy	Support RE development			
Energy demand	Historical trend	Historical trend			
RE Capacity additions	Historical trend + Current policy	Historical trend + Current policy + All announced targets			
RE CAPEX	Modest CAPEX reduction	Accelerated CAPEX reduction			
RE Capacity factor	No/slow improvement	Accelerated improvement for Solar and Wind			
Applicable	All sectors	Focused on Power and Transport, other sectors same as BAU			

Renewable Energy technologies in the 6th Edition

Data collection

Example of data sources

Publisher	Selected publications
APEC	 Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region
IEA	 Projected Costs of Generating Electricity World Energy Statistics 2015 Integration of Variable Renewables
IRENA	 Rethinking Energy: Towards a New Power System Renewable Capacity Statistics 2016
REN21	Renewables 2014 Global Status Report
FAO	Data on unutilized arable land, yields, trends
Economy's data sources	 Ministries, statistics bureau etc.

Energy policy context: Japan's example

RE specific legislation	Strategic Energy Plan 2014 (Section 3, Chap. 3); Long-term Energy Supply and Demand Outlook 2015
RE-related policy/plan	Energy mix increases RE to about 15% from 10% in FY2010
Target RE generation share	22%-24% in 2030 (hydro 9.2%, solar 7.9%, wind 1.7%)
Feed-in tariff (FiT)	23.10 ~ 57.75 JPY/kWh (tax included) ¹
Renewable Portfolio Standard (RPS)	Was available, but replaced by FiT
Tax incentive	Tax for Climate Change Mitigation (2012)

¹ Act on Purchase of Renewable Energy-Sourced Electricity by Electric Utilities (2011)

Renewable policies summary for power in APEC

Economy		RE-related policy /plan	Development strategy	Target RE generation share	Feed-in Tariff (FiT)	RE portfolio standard (RPS)	Tax incentive
Australia	\checkmark	\checkmark	\checkmark	23.5% in 2020	-	-	\checkmark
Brunei Darussalam	-	\checkmark	\checkmark	10% by 2035		-	-
Canada	-	\checkmark	\checkmark	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	\checkmark
Chile	\checkmark	\checkmark	\checkmark	20% in 2025, 70% in 2050	-	-	-
China	\checkmark	\checkmark	\checkmark	20% primary in 2030	\checkmark	\checkmark	-
Hong Kong	-	\checkmark	\checkmark	\checkmark	-	-	\checkmark
Indonesia	-	\checkmark	\checkmark	232 Mtoe (247.4 GW) in 2050	\checkmark	-	\checkmark
Japan	\checkmark	\checkmark	\checkmark	22-24% in 2030	\checkmark	-	\checkmark
Korea	\checkmark	\checkmark	\checkmark	(13.4%) in 2035	-	\checkmark	\checkmark
Malaysia	\checkmark	\checkmark	\checkmark	3% in 2020		\checkmark	\checkmark
Mexico	\checkmark	\checkmark	\checkmark	(29.1%) in 2028	_	-	\checkmark
New Zealand	_	\checkmark	\checkmark	90% in 2025		-	-
Papua New Guinea	_	-	-	100% in 2050		-	-
Peru	\checkmark	\checkmark	\checkmark	60% (5%^) in 2020		-	-
The Philippines	\checkmark	\checkmark	\checkmark	(+9.9 GW, +200%) in 2030	\checkmark	\checkmark	\checkmark
Russia	_	\checkmark	\checkmark	4.5%^ (25 GW^) in 2030	\checkmark	-	-
Singapore	_	\checkmark	\checkmark	-	-	-	-
Chinese Taipei	\checkmark	\checkmark	\checkmark	12.6% (27.1%) in 2030	\checkmark	-	\checkmark
Thailand	-	\checkmark	\checkmark	20% in 2036	\checkmark		\checkmark
United States	-	\checkmark	\checkmark	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	\checkmark
Viet Nam	-	\checkmark	\checkmark	6% in 2030	\checkmark	-	-

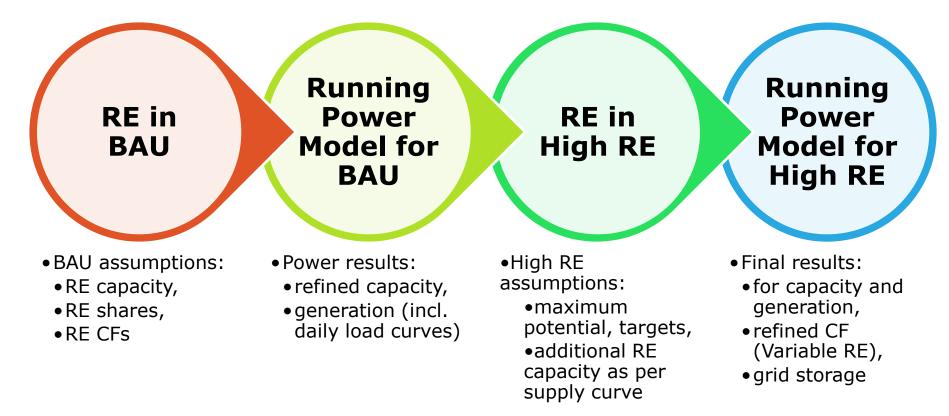
Note: $\sqrt{}$ = existing; - = not existing currently; * = applied in some local territories or states; ^ = target excludes large-scale hydro; (...) corresponds to installed renewables capacity targets Sources: APERC analysis and economy reports

Biofuel policies in APEC

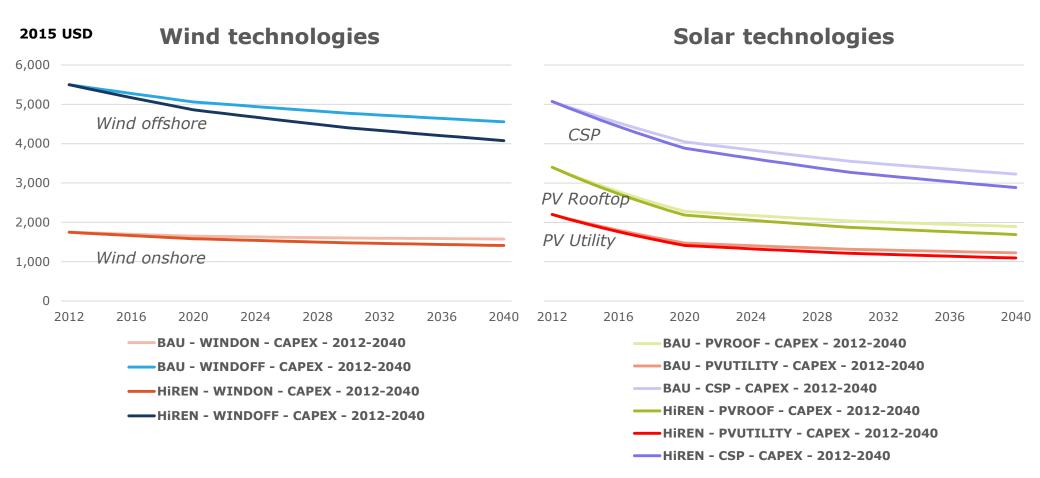
Economy	Regulation	Blend rate mandate		Blend rat	Incentives,		
		Bioethanol	Biodiesel	Bioethanol Biodiesel		subsidies and taxation	
Australia	\checkmark	$\sqrt{*}$	$\sqrt{*}$	E4/E5*	B2*	\checkmark	
Brunei Darussalam	-	-	-	-	-	-	
Canada	\checkmark	up to E8.5^	up to B4^	E5	B2	\checkmark	
Chile	-	-	-	-	-	-	
China	-	E10^	-	10 Mt (2020)	2 Mt (2020)	\checkmark	
Hong Kong	\checkmark	-	-	-	-	\checkmark	
Indonesia	\checkmark	E3	B10	E20 (2025)	B30 (2025)	\checkmark	
Japan	\checkmark	\checkmark	-	0.5 million	Loe (2017)	\checkmark	
Korea	\checkmark	-	B2	-	B5 (2020)	\checkmark	
Malaysia	\checkmark	-	B7	-	B10	\checkmark	
Mexico	\checkmark	E2	-	\checkmark	-	\checkmark	
New Zealand	-	-	-	-	-	-	
Papua New Guinea	-	-	-	-	-	-	
Peru	\checkmark	-	-	E7.8	B5	\checkmark	
The Philippines	\checkmark	E10	B2	E20 (2020)	B20 (2025)	\checkmark	
Russia	\checkmark	-	-	-	-	-	
Singapore	-	-	-	-	-	-	
Chinese Taipei	\checkmark	-	-	-	-	\checkmark	
Thailand	-	-	B7	4 billion L/yr	5 billion L/yr	\checkmark	
United States	\checkmark	up to E15^	up to B10^	136 billion L	/yr (2022)^	\checkmark	
Viet Nam	\checkmark	E5	-#	E10 (2017)	-	$\overline{\checkmark}$	

Note: $\sqrt{}$ = existing; - = not existing currently; * = applied in New South Wales and Queensland for bioethanol and in New South Wales for biodiesel; ^ = applied at federal level and in some local territories or states; # = biofuels traded with no mandated blend rate; Mt = million metric tonnes; Loe = litres of oil equivalent; L/yr = litres per year.

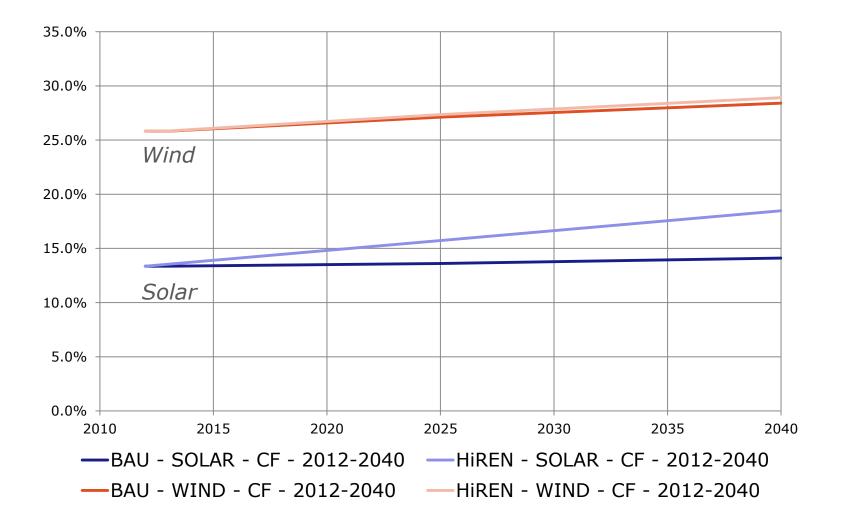
Sources: APERC analysis and IEA statistics 2015.



Modelling methodology


Modelling Renewables in Power for BAU and High Renewables

- BAU demand is used in both cases
- Doubling the share of RE in power from 16.1% (2010) to 32.2% (2030)
- RE Supply curve based on LCOE


RE assumptions: Wind and Solar CAPEX in Australia

Shared vertical axis; Unit: USD Source: APERC analysis

RE assumptions: CF for Wind and Solar in Australia

Power model structure

Power supply model structure

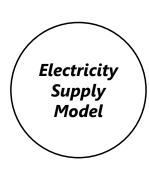
Demand models

Yearly demand

Load curves

Prices and costs

- Energy and CO₂ prices
- Initial/O&M costs


Existing capacity

Operational info.

- Plant availability
- Capacity credit
- Efficiencies
- Minimum output level
- Reserve margin target

Policy information

- Power development plans/policies
- Renewables/nuclear policies

'Least cost' approach Capacity addition and generation volume is determined based on costs (initial, O&M, fuel and carbon costs) under various technical and political constraints.

Capacity additions

Investment needs

Generation by plant type

Plant dispatch and

Fuel consumption

emission intensity

Total and average power generation costs

Modelled technologies

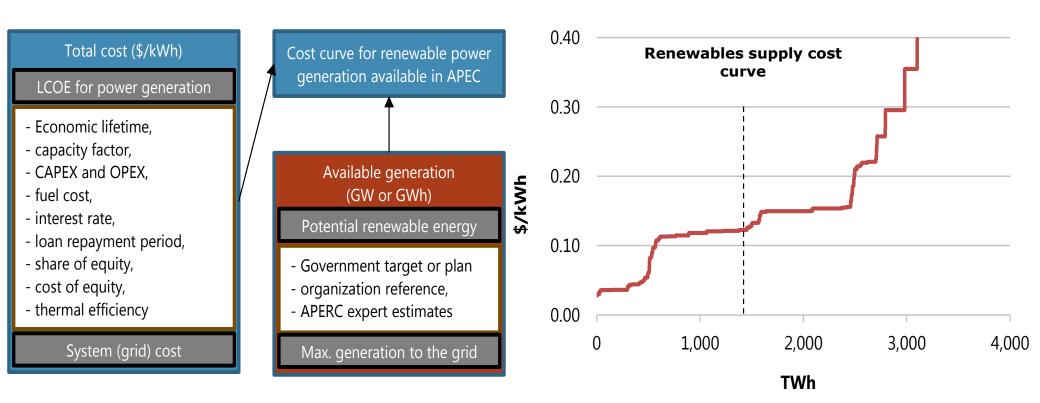
Generation

- Nuclear
- · Coal-fired (subcritical)
- Coal-fired (super / ultra-super critical)
- Gas turbine •
- Gas combined cycle
- Oil-fired
- Solar PV & solar thermal
- Wind (onshore, offshore)
- Geothermal
- Biomass and others

Storage

- Pumped hydro
- Battery

Least cost optimisation model (written in GAMS)


Source: APERC

capacity factor

Emissions and

RE supply cost curve details

- A mix of additional RE generation is defined by using the supply curve, while knowing the required RE generation for a certain year
- Total cost of RE electricity = LCOE of RE generation + system (grid) costs

Variable RE assumptions and LCOE calculation

- Variable RE technologies, despite the grid storage are limited to:
 - 20% in developing economies, and
 - 30% in developed economies
- With technology improvement, and increasing CF, LCOE will lower each year,

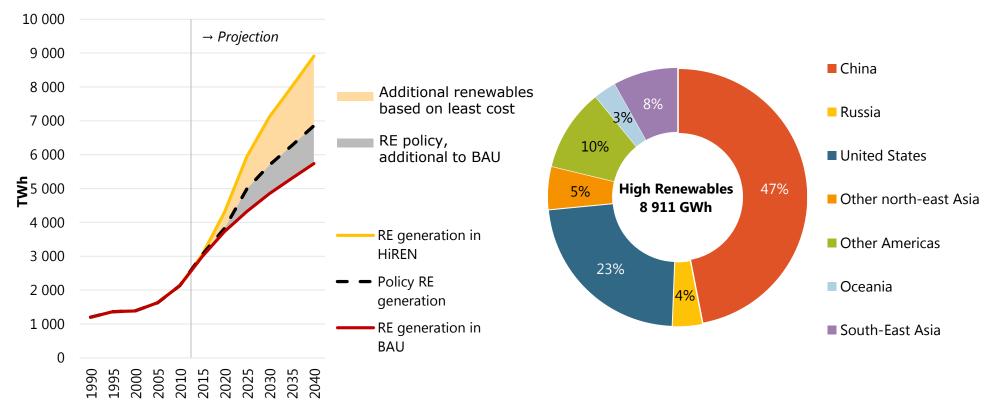
$$LCOE = \sum_{t} \frac{(Investment_t + 0\&M_t + Fuel_t) * (1+r)^{-t}}{\sum_{t} (Electricity_t * (1+r)^{-t})}$$

Where:

Investment _t	: Investment in year "t" (i.e. CAPEX)
O&M _t	: Operation and maintenance costs in year "t" (i.e. OPEX)
Fuel _t	: Fuel costs in year "t"
(1 + r) ^{-t}	: The discount factor for year "t"
Electricity _t	: The amount of electricity produced in year "t"

• LCOE varies from \$0.03/kWh (hydro) to \$0.31/kWh solar PV rooftop

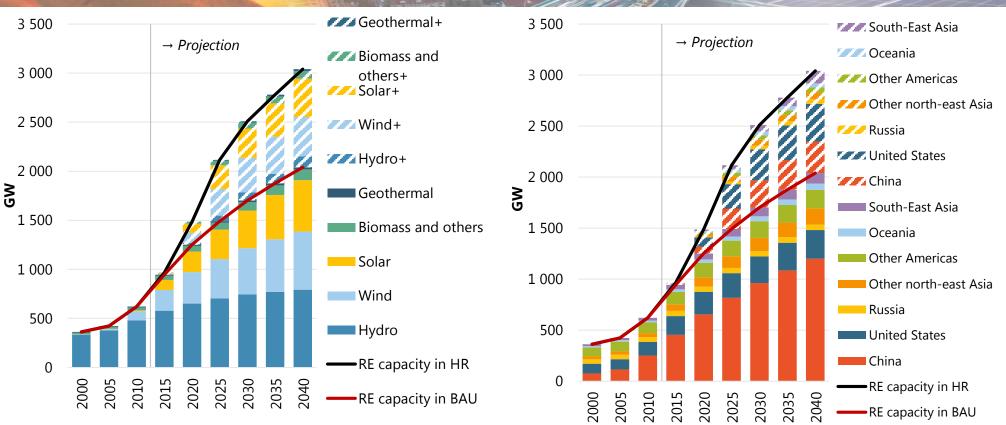
Selected results



Current renewable policy falls short of the doubling

Renewable generation by scenario

Renewable generation in 2040



Renewables expand greatly in China, the United States and South-East Asia. China is leading in both installed capacity and generation.

Note: this map is for illustrative purposes and is without prejudice to the status of or sovereignty over any territory

Renewable capacity in the High Renewables

RE capacity increases fourfold from 620 GW to 2 510 GW (2030), translating to about 100 GW/yr

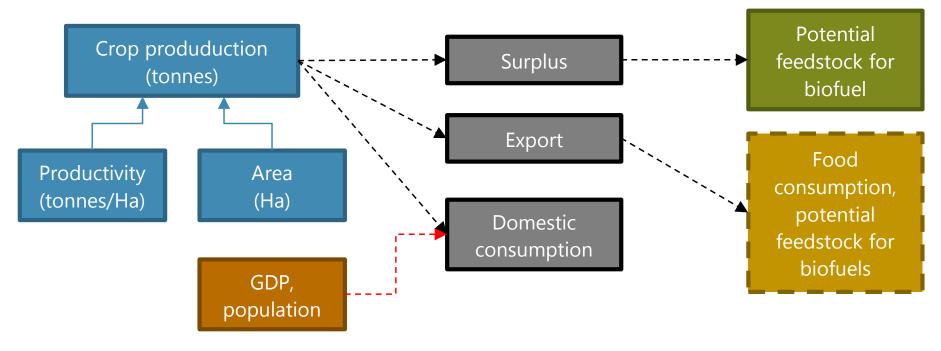
A lower CAPEX for solar leads to enormous increase in its installed capacity - 73 times increase from 2010 to 2030 compared with BAU

Source: IEA (2015), APERC analysis NOTE: BAU = Business-as-usual, HR = High Renewables

Transport

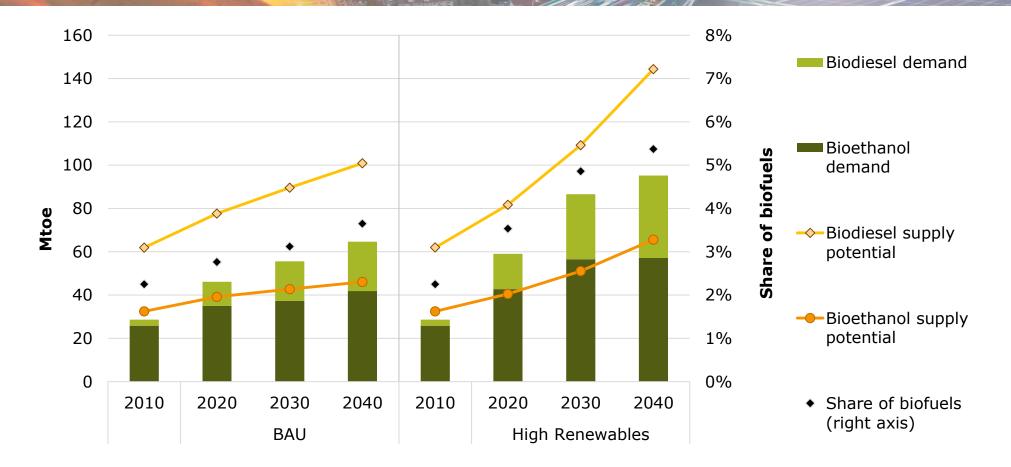
Transport: projecting biofuel

- Historical production and productivity are used for the base year 2010, then productivity increases due to improved technology
- In each case regional feedstock potential is calculated
- Demand and Supply for two fuels: Bioethanol and Biodiesel are considered
- Doubling the share of RE from 2010 to 2030: 4.6% (= 2 x 2.3%)


Unit: Mtoe	2010	2015	2020	2025	2030	2035	2040
Total Biofuels Demand	28.6	38.3	46.2	51.3	55.6	60.7	64.6
Bioethanol	25.9	30.5	35.0	36.6	37.3	39.9	41.9
Biodiesel	2.8	7.8	11.2	14.7	18.3	20.7	22.8
Total BAU Supply Biofuels	62.0	71.8	77.6	83.6	89.6	95.6	100.9
Bioethanol	32.5	37.2	39.2	41.0	42.8	44.5	46.1
Biodiesel	29.5	34.7	38.4	42.6	46.8	51.1	54.9

APEC Biofuels Demand and Supply in BAU scenario

Source: APERC analysis


Transport: biofuel supply potential estimation

- 1st generation biofuels from 12 energy crops,
- maximising the arable land and enhancing productivity,
- surplus energy crops could be used as potential feedstock for biofuel <u>supply</u>,
- Biofuels <u>demand</u> is estimated through the current gov't biofuels policy and plan, in the absence of which, the supply potential is considered to introduce biofuels minimum blend rates.

APEC biofuels in BAU and the High Renewables scenario

Biofuel supply growing 2.7%/yr could meet over 5% of transport demand. Enough bioethanol to meet the growing demand, and surplus of biodiesel.

Sources: APERC analysis and IEA statistics 2015.

Future work

Future Work

Detailed RE potential estimation by economy and by sector

Currently performed for Buildings and Industry (demand) and Bioenergy (supply)

Research project is underway

Improve load curves and power grid topology to quantify RE impacts

Detailed load curves being added for EDSO 7

Water-energy nexus (aspirational target)

Socio-economic-energy outlook

Thank you!

http://aperc.ieej.or.jp/

