KOREA's Hydrogen Policy and R&D

April 7, 2022

Tae-Hyun Yang Hydrogen Energy Research Division, Korea Institute of Energy Research (KIER)

- 1. KOREA's Hydrogen Energy Policy
- 2. Current Status of Hydrogen Energy in KOREA

1. KOREA's Hydrogen Energy Policy

- > Hydrogen Economy Roadmap was announced (Jan. 2019)
- Hydrogen Economy Promotion and Hydrogen Safety Management Law came into force (Feb. 2021)
- 11 Hydrogen-specialized companies designated based on Hydrogen Economy Law (June, 2021)
- Carbon Neutral Strategy by 2050 (2020)
- Hydrogen Economy Action Plan was announced (Nov. 2021)
 around 33% of energy needs will be powered by hydrogen fuel for carbon neutrality by 2050
- ➢ Revision of the law proposed on "Clean Hydrogen Energy Portfolio Standards (CHPS)" and clean hydrogen certification system (June, 2022)
- CHPS for H2 –fueled power generation (currently included in RPS)
- Standards and verification process being developed for certification system

Korea's 2050 Vision : Realization of a safe and sustainable carbon-neutral society from the climate crisis

Key Elements

• Expanding the use of clean power and **hydrogen** across all sectors

2 Improving energy efficiency to a significant level

3 Commercial deployment of carbon removal and other future technologies

O Scaling up the circular economy to improve industrial sustainability

G Enhancing carbon sinks

Korea Hydrogen Roadmap : Turning Point of Hydrogen Tech

	2015	2019	2022.3	2050 (Target)
Government	MOTIE MSIT	MOTIE , MSIT (Rⅅ) ME (HRS deployment) MOLIT(H ₂ -city, transportation)		
Budget (MOTIE) (US \$ M)	30-40	60 111		
FCEV	160	3,216	20,628	51.5M
HRS	12	24	125	2,000
Stationary FC (MW)	244	350 730.6		8,000/2,100(RPG)
Bus/Truck	demo	7	150/5 110,000	
Production (MMT)	<0.1	<0.2	0.47	5.26
H2 Mobility		taxi, forklift, drone, submarine	HDV, Train, Ship, Drone etc.	
Storage	Compressed Gas, Hydrogen Storage Metal	NH3, LH2, LOHC		

*Hydrogen Production: 1.9 Million Tons (2015). Most consumptions take plance in industry.

KOREA's Hydrogen Roadmap Action Plan (2021)

(Unit: M ton CO₂eq)

Green H2 Production/Cost : (2030) 250k ton / ₩3,500/kg (2050) 3M ton / ₩2,500/kg

KOREA's Hydrogen Action Plan

Hydrogen Demand & Supply Plan

		2050	
	Conversion (GT, Fuel Cell)	13.5	
Hydrogen Demand	Industry (Steel, Petrochemi cal, Cement etc)	10.6	
(IVIIVIt/yr)	Transport	2.2	
	CCUS	1.6	
	Total	27.9	

		2022	2030	2040	2050
Hydrogen	Import (Clean H2)	0	1.96		22.9
	Green H2	0	0.25		3
Supply (MIVIt/yr)	Grey H2 By Product	0.22	0.94		0
	Blue H2	0	0.75		2
	Total	0.22	3.9		27.9
Delivery	Domestic	Tube Trailer	LH2 trailer Tube Trailer	Pipe Line Trailer (GH2, LH2)	Pipe Line
	Overseas	-	Ship (H2 tanker)	Ship (H2 tanker)	Ship (H2 tanker)

2. Current Status of Hydrogen Energy in KOREA

- Hydrogen Production (Low TRL)
 - Cost competitiveness with fossil fuel : cost, efficiency, electricity, utilization, etc.
 - Clean hydrogen (grey → blue →green) : electrolysis, NG reformer with CCUS etc.,
- Hydrogen Storage and Transport (Low TRL)
 - Increase hydrogen storage density
 - Gas H2 : high pressure tank ($900/kg \rightarrow 400/kg$), pipe line ($20 \rightarrow 100$ bar), tube trailer ($200 \rightarrow 450$ bar)
 - Liquid H2 : liquid hydrogen plant, storage tank, tank lorry and tanker
 - LOHC, NH3 : hydrogenation and dehydrogenation catalyst and process
- Hydrogen Refueling Station (Low TRL)
 - Safety, Cost, Standard, Demonstration
 - Localization of core materials and components

Strategy of Hydrogen R&D

- Hydrogen Mobility (High TRL)
 - Cost, Durability (LDV, LDT, HDV)
 - Localization of core materials and components
- > Conversion (stationary fuel cell, hydrogen turbine) (Low and High TRL)
 - LCOE (system cost, efficiency, etc.)
 - Localization of core materials and components

1. Energy Conversion : Fuel Cell Power Plant

20MW distributed power in Seoul(2017)

- E: 160 M kWh/year, Heat : 6.5 T Cal/year
- Fuel : NG

50MW Plant in Daesan Industry Complex(2020)

• Fuel : By product hydrogen

1. Energy Conversion : Fuel Cell Power Plant

KOWEPO, 77MW FC Power Plant 2021 Doosan Fuel Cell (PAFC) Electricity Supply for 237,300 home in Incheon

KOSPO, 78MW FC Power Plant 2017-2021

Doosan Fuel Cell (PAFC), Posco Energy (MCFC), Electricity Supply for 250,000 home in Incheon Hot Water Supply for 44,000 home

1. Energy Conversion : Coal & Gas Fired Power Plant

Fuel Transition from Coal and LNG to green H₂ and NH₃

Coal

<image><image>

Flow of Ammonia Production to Power Generation

LNG

Green Hydrogen and Green Ammonia

1. Energy Conversion : Thermal Power Plant

2022. 03. 23

Doosan Enerbility: 270W LNG GT R&D of Fuel Transition from LNG to Hydrogen and Ammonia

the second se

KIER R&D of Ammonia and Coal Cofiring

2. Building and Home : m-CHP Fuel Cell

Solar (Incheon International Airport)

Geothermal (Lotte World Tower)

Fuel cell (Eulji Twin Tower)

Heat recovery from treated wastewater (Seonam Water Recycling Center)

17

완성차, 부품업체 노력과 기초부터, 부품, 시스템, 차량실증까지 정부의 적극적인 R&D 지원으로 함께 이루어진 세계최고의 수소차

- 연료전지부품 품질보증 : 10년 16만km(투산ix 8만km)

- 연료전지 스택 95kW + 배터리 40kW(1.5kWh 추정)

- 연료전지 스택 내구성 : 20만km(E) (100% 1, 10만km) : 화이트크림, 코쿤실버, 카퍼메탈릭,
- ◈ 색상(5종)
- 프리미엄(Premium) : 7,220만원

티타늄그레이(무광), 더스크 블루

- 모던(Modem) : 6,890만원
- ◆ 차량가격

◈ 성능

NEXO (Hyundai Motors)

- 최대 출력 : 135kW(9%¹/₂, 124kW)

- 모터 최대출력 : 113kW(154ps)

- 수소저장용량 : 6.33kg(700기압)

• 최고속도 : 177km/h(11%¹, 160km/h)

• 복합연비 : 96.2km/kg H₂(25% (), 76.8km/h)

• 1충전 주행거리 : 609km(47%¹/₂, 415km/h)

3. Transportation: Fuel Cell Vehicle

3. Transportation: Fuel Cell Heavy Duty Vehicle

Hydrogen BUS : ELEC CITY Fuel Cell in 11 districts (Seoul, Pusan etc)

PEMFC : 90kW stack x 2 Motor : 180kW (240 hp) H2 Tank : 845 liter (5 ea) Driving Range : 474km

3. Transportation: Fuel Cell Heavy Duty Vehicle

PEMFC : 95kW stack x 2 Motor : 350kW (476 hp) H2 Tank : 31kg (350 bar) Driving Range : 400km Charging Time : 20 min

KOREA SHIPBUILDING & OFFSHORE ENGINEERING

- Commercialization of ammonia powered ship by 2025
- Commercialization of hydrogen powered ship by 2030

- Commercialization of ammonia powered ship by 2025
- Development of SOFC powered ship with Bloom Energy

- Commercialization of ammonia powered ship by 2024
- Development of fuel cell core technologies

Carbon-Free Fuel : Liquid H2 or Ammonia ???

4. Green Hydrogen Production R&D

Power to Gas Project in Jeju Island

- In Jeju, renewable energy-based power generation more than 42 percent
- Curtailment of solar and wind power
- Needs of ESS (Li ion Battery and Hydrogen Storage)
- One of solutions : Power-to-gas green hydrogen production technology
 - 1st Phase : 500kW Water Electrolysis
- 2nd Phase : 3MW Water Electrolysis
- 3rd Phase : > 10MW Water Electrolysis

4. Green Hydrogen Production R&D Electrolysis R&D (Alkaline EC)

Alkaline electrolysis (KIER)

- Water electrolysis (Low-temperature)
- 0.1 MW, Stack efficiency 82%(HHV)
- Partial load range : 5~110%

Alkaline water electrolysis

Company	Stack module	System capacity	Efficiency (HHV)
EM solution	0.5MW	1MW	
Suso Energen	0.25MW		
KIER	0.1 MW		82%

Electrolyser for dynamic operation

KIER NIAI electrode

KIER composite Separator

Electrolysis R&D (PEM electrolysis)

PEM electrolysis

- Water electrolysis (Low-temperature)
- Scale Up stack and system
- Durability improvements on PEMWEs
- AST testing protocols development
- Supported Ir catalyst for OER
- Porous sintered Ti sheet for PTL

PEM electrolysis

Company	Stack module	Stack capacity	Efficiency (HHV)
Elchemtech (KR)	1 MW (3000 cm²)	Scalable	-
KIER, KIST (KR)	N.A.		82%

Supported Ir catalyst

Ti sintered PTL

Electrolysis R&D (SOEC)

SOEC electrolysis (KIER)

- High-temperature electrolysis
- Durability improvements on SOEC
- Flat tubular type in-house cells/stack
- Hybrid renewable energy system for energy storage system (unitized SOFC&SOEC)

Grey Hydrogen Production R&D Engineering Design & Fabrication of Test Unit (KIER)

- Production capacities : 643 kg/day (300 Nm³/hr)
- Installation space : 7.0m(L)x3.0m(W)x3.5m(H)

[3D-modeling for skid unit]

[Prototype unit of 643 kg/day class]

Blue H2 Production : Reformer + CCS (KIER)

• Reformer : H₂, > 200,000 Nm³/h

- scale up R&D

• H2 PSA : commercialized

- CCS:
 - scale–up

KIERSOL wet-absorption

MAB absorbent process

0.5 MW scale demonstration At Coal Power Plant

1995~1998

99.99% H₂ 150Nm³/h (Hyundai Oilbank)

2012 99.999% H₂ 10,000 Nm³/h (Hyosung)

2015 99.5% H₂ 54,000 Nm³/h (India, HPCL)

Hydrogen Production by NH₃ Cracking

> Development of high purity hydrogen production unit

✓ A high-purity hydrogen production system with 20 Nm³/hThe purity of produced hydrogen was 99.999% or more, and the concentration of residual ammonia was 0.1ppm or less.

Catalyst

Supporter

What will we do after 2030?

Thank You for Your Attention! 감사합니다.