

Resource Potential of Algae for Sustainable Biodiesel Production in the APEC Economies

David Batten, Peter Campbell and Greg Threlfall with the assistance of Jeff Skeer (DOE)

Presentation at APEC Workshop on Algal Biofuels San Francisco, 12 September 2011

Asia-Pacific Economic Cooperation

Project Objectives - Preamble

- First generation biofuels cannot satisfy the future transport fuel needs of the 21 APEC economies.
- They need second generation biofuels, including biodiesel.
- Project goal → to estimate the potential amount and location of algal biomass in the APEC region that can be grown in raceway ponds and used for the sustainable production of biodiesel.
- Microalgae biomass grown in sunlight holds particular promise because:
 - It could be a sustainable, relatively low GHG emissions feedstock;
 - It grows rapidly and yields more biodiesel per hectare than plants grown in soil;
 - It contains little or no sulphur or other toxic substances;
 - It is biodegradable and does not destroy natural habitats; and
 - It does not compete directly with food production on arable land.

Potential Usefulness of Project Findings

- Relevant to economic, energy, land and agriculture ministries in developed and developing APEC economies.
- Typical questions it may help to answer are:
 - Could <u>waste streams</u> such as human and animal wastes in/near towns and cities – become a sustainable source of algal biodiesel?
 - Could *marginal, coastal land* be used for algal biodiesel production?
 - Should candidate locations be surveyed by governments to gain a fuller understanding of their biodiesel potential?
 - Do limits exist on the <u>scaling-up</u> of biodiesel from microalgae owing to competition for key nutrients (C, N and P)?
 - What are the most sustainable ways of displacing fossil diesel for transport?
- The project should enhance the capacity of officials and experts in developed and developing economies to address these and other related issues.

Making Algal Biodiesel

Two Estimation Methods with Dunaliella

- <u>Method 1</u>: Leverages human and animal wastes for N and P only (see van Harmelen and Oonk, 2006):
 - <u>Assumes the limiting factor is N</u> and residual biomass is used for animal feeds – i.e. N and P are not recycled;
 - TNO estimates adjusted down because their analysis assumed all wastewater in each economy was collected and treated;
 - Provides a rough, lower-bound estimate of algal biomass potential in APEC economies over the next 10-15 years.
- <u>Method 2</u>: As for Method 1, with nutrients (CO₂, N, P and K) coming from wastewater & some nearby power generation:
 - <u>Assumes the limiting factor is C</u>, with N and P being recycled;
 - Residual biomass may be converted into biogas via anaerobic digestion and biogas combusted to provide power & CO₂;
 - Provides an assessment of extra possibilities in the long-term.

Method 1: Adjusted TNO Approach

- Step 1: Given limited data, estimate theoretical possibilities;
- <u>Step 2</u>: Introduce constraints to whittle the theoretical resources down to a practical set of achievable possibilities (e.g. Not much land available in Hong Kong or Singapore).
- Such a sequential constraints approach has been used by:
 - TNO's van Harmelen and Oonk (2006) for global algal biomass;
 - CSIRO's Farine et al (2011) and others for terrestrial biomass.
- <u>Step 2a</u>: **Climate constraint** → temperature and insolation;
- <u>Step 2b</u>: Water & nutrients (N,P) → collected wastewater
 - TNO figures should be adjusted down in each APEC economy because not all wastewater is collected for treatment.
- <u>Step 2c</u>: Land available \rightarrow a function of altitude & population;
- <u>Step 2d</u>: CO_2 available \rightarrow a function of population densities.

Method 1: Adjusted TNO Approach

Step 2a: Climatic resources:

The TNO approach includes nations that fall within the blue rectangle, i.e. those enjoying annual average temperatures of 15°C or more.

In future, use constraints arising from incident solar radiation, minimum winter and night-time temperatures.

Source: Van Harmelen and Oonk, 2006

World Daily Solar Radiation Map

Source: OKSolar

Theoretical Algae Resource Production Potential by APEC Economy in 2020

APEC ECONOMIC ZONE	MUNICIPAL WASTE (t)	ANIMAL WASTE (t)	TOTAL WASTE (t)	ALGAE (Mt)	RANK
Australia	217,000	572,400	789,400	7.89	
Brunei Darussalam	0	0	0	0	
Canada (See Note 1)	0	0	0	0	
Chile	7,000	0	7,000	0.07	
Peoples Republic of China	5,257,750	5,281,600	10,539,350	105.39	First
Hong Kong, China	0	0	0	0	
Indonesia	977,500	216,000	1,193,500	11.94	
Japan	20,000	11,000	31,000	0.31	
Republic of Korea	0	0	0	0	
Malaysia	111,000	64,800	175,800	1.76	
Mexico	619,500				Second
	0.0,000	3,060,700	3,680,200	36.80	Occond
New Zealand	0	3,060,700 0	<u>3,680,200</u> 0	<u>36.80</u> 0	Occond
New Zealand Papua New Guinea	0 22,000	3,060,700 0 400	3,680,200 0 22,400	<u>36.80</u> 0 0.22	
New Zealand Papua New Guinea Peru	0 22,000 119,750	3,060,700 0 400 58,800	3,680,200 0 22,400 178,550	36.80 0 0.22 1.79	
New Zealand Papua New Guinea Peru The Philippines	0 22,000 119,750 111,750	3,060,700 0 400 58,800 99,100	3,680,200 0 22,400 178,550 210,850	36.80 0 0.22 1.79 2.11	
New Zealand Papua New Guinea Peru The Philippines Russia (See Note 1)	0 22,000 119,750 111,750 0	3,060,700 0 400 58,800 99,100 0	3,680,200 0 22,400 178,550 210,850 0	36.80 0 0.22 1.79 2.11 0	
New Zealand Papua New Guinea Peru The Philippines Russia (See Note 1) Singapore	0 22,000 119,750 111,750 0 0	3,060,700 0 400 58,800 99,100 0 0	3,680,200 0 22,400 178,550 210,850 0 0	36.80 0 0.22 1.79 2.11 0 0	
New Zealand Papua New Guinea Peru The Philippines Russia (See Note 1) Singapore Chinese Taipei	0 22,000 119,750 111,750 0 0 25,000	3,060,700 0 400 58,800 99,100 0 0 30,000	3,680,200 0 22,400 178,550 210,850 0 0 55,000	36.80 0 0.22 1.79 2.11 0 0 0.55	
New Zealand Papua New Guinea Peru The Philippines Russia (See Note 1) Singapore Chinese Taipei Thailand	0 22,000 119,750 111,750 0 0 25,000 428,250	3,060,700 0 400 58,800 99,100 0 0 30,000 299,800	3,680,200 0 22,400 178,550 210,850 0 0 55,000 728,050	36.80 0 0.22 1.79 2.11 0 0 0.55 7.28	
New Zealand Papua New Guinea Peru The Philippines Russia (See Note 1) Singapore Chinese Taipei Thailand United States of America	0 22,000 119,750 111,750 0 0 25,000 428,250 848,500	3,060,700 0 400 58,800 99,100 0 0 30,000 299,800 1,033,500	3,680,200 0 22,400 178,550 210,850 0 0 55,000 728,050 1,882,000	36.80 0 0.22 1.79 2.11 0 0 0 0.55 7.28 18.82	Third
New Zealand Papua New Guinea Peru The Philippines Russia (See Note 1) Singapore Chinese Taipei Thailand United States of America Viet Nam	0 22,000 119,750 111,750 0 0 25,000 428,250 848,500 430,500	3,060,700 0 400 58,800 99,100 0 0 30,000 299,800 1,033,500 468,600	3,680,200 0 22,400 178,550 210,850 0 0 55,000 728,050 1,882,000 898,600	36.80 0 0.22 1.79 2.11 0 0 0 55 7.28 18.82 8.99	Third

<u>Note 1</u>: Wholly located outside of the 15 degrees C optimal algal growth zone. Assumes 1 kg of N \rightarrow 10 kg of algal biomass.

Method 1: Adjusted TNO Approach

Theoretical Algae Resource Production Potential

Reduction due to Climate Constraints

Location of Waste Nutrient Resources

Reduction due to Wastes Collected

Reduction due to Land Available

Reduction due to CO₂

PARPP

PARPP = Practical Algae Resource Production Potential

Estimates of Waste Streams "Collected"

APEC ECONOMIC ZONE	Percentage of Human Sewage Collected	Percentage of Cattle in Feedlots	Percentage of Pigs in Medium-Large Piggeries
Australia	87%	5.4%	54%
Brunei Darussalam	40%		
Canada (See Note 1)	74%	20%	40%
Chile	96%		
Peoples Republic of China	46%		
Hong Kong, China	93%		
Indonesia	25%		
Japan	67%		
Republic of Korea	50%		
Malaysia	40%		
Mexico	20%	5.7%	40%
New Zealand	80%		
Papua New Guinea	30%		
Peru	81%		
The Philippines	7%		
Russia (See Note 1)	55%		
Singapore	100%		
Chinese Taipei	85%		
Thailand	40%	0	80%
United States of America	71%	80%	45%
Viet Nam	5%	1%	5%

Note 1: Wholly located outside of the 15°C optimal algal growth zone

Practical Algae Resource Production Potential by APEC Economy in 2020

	MUNICIPAL	ANIMAL	TOTAL	ALGAE	BIODIESEL	AS % OF	
APEC ECONOMIC	WASTE (t)	WASTE (t)	WASTE (t)	(Mt)	(ML)	AUTO DIESEL	RANK
ZONE First						USAGE	
Australia	32,750	0	32,750	0.33	110	1.0%	
Brunei Darussalam	0	1,750	1,750	0.02	6	2.9%	
Canada (See Note 1)	0	0	0	0	0	0	
Chile	0	3,000	3,000	0.03	10	0.2%	
Peoples Republic of China	989,500	1,760,000	2,749,500	27.5	9,165	9.5%	First
Hong Kong, China	0	0	0	0	0	0	
Indonesia	610,250	99,500	709,750	7.1	2,366	15.4%	Third
Japan	0	14,000	14,000	0.14	47	0.1%	
Republic of Korea	0	4,800	4,800	0.05	17	0.1%	
Malaysia	76,250	45.000	121.250	1.21	404	5.4%	
Mexico	108,250	294,500	402,750	4.03	1,343	6.7%	
New Zealand	0	7,500	7,500	0.07	25	0.9%	
Papua New Guinea	0	0	0	0	0	0	
Peru	5,500	1,500	7,000	0.07	23	0.6%	
The Philippines	71,750	105,000	176,750	1.77	589	4.0%	
Russia (See Note 1)	0	0	0	0	0	0	
Singapore	0	0	0	0	0	0	
Chinese Taipei	0	0	0	0	0	0	
Thailand	334,000	245,000	579,000	5.79	1,930	5.3%	
United States of America	542,250	234,400	776,650	7.76	2,589	1.3%	Second
Viet Nam	93,750	135,000	228,750	2.29	762	3.3%	
TOTAL	2,864,250	3,190,950	6,055,200	51.77	20,184		

Note 1: Wholly located outside of the 15 degrees C optimal algal growth zone

Method 2: Sustainable Inputs Approach

Source: Campbell, Beer and Batten, 2009

- Key nutrients (CO₂, N, P and K) from wastes and on-site power;
- Limiting factor will be amount of carbon available;
- Facilities have water available to produce algal biomass in ponds;
- Oil extracted from biomass and processed into biodiesel;
- Nutrients recycled;
- Residual biomass converted into biogas via anaerobic digestion;
- Biogas combusted to provide electric power & CO₂ on-site;
- Pathway based on Oswald and Golueke (1960) and many others.

Practical Algae Resource Production Potential in APEC: Near and Long Term

	METHOD 1: METHOD 2: METHOD mendiostad 20 addicated 20 and dist		HOD 2:	BIOD	IESEL	AS % OF AUTO				
APEC ECONOMIC ZONE		justed E (Mt)		IJUSted		Justed	(Near	IL) Lona	DIESEL Near	Long
Australia		0.33	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.28		3.28	110	1,066	1.0%	9.6%
Brunei Darussalam		0.02		0.05		0.05	6	15	2.9%	7.4%
Canada (See Note 1)		0		0		4.77	0	1,550	0	8.0%
Chile		0.03		0.75		1.50	10	488	0.2%	10.0%
Peoples Republic of China	First	27.5	Second	36.7	Second	73.4	9,165	23,855	9.5%	24.8%
Hong Kong, China		0		0.57		0.57	0	185	0	12.4%
Indonesia	Third	7.1	Third	5.73		5.73	1,862	2,366	15.4%	19.5%
Japan		0.14		3.57	Third	7.14	47	2,320	0.1%	6.2%
Republic of Korea		0.05		2.19		2.19	17	712	0.1%	3.3%
Malaysia		1.21		1.12		1.12	364	404	5.4%	5.9%
Mexico		4.03		4.02		4.02	1,340	1,343	6.7%	6.7%
New Zealand		0.07		0.04		0.39	25	127	0.9%	4.5%
Papua New Guinea		0		0.21		0.21	0	68	0	70%
Peru		0.07		2.23		2.23	23	725	0.6%	20.3%
The Philippines		1.77		0.92		0.92	299	589	4.0%	7.9%
Russia (See Note 1)		0		0		6.70	0	2,178	0	11.7%
Singapore		0		0.51		0.51	0	166	0	7.8%
Chinese Taipei		0		1.75		1.75	0	569	0	1.0%
Thailand		5.79		2.71		2.71	881	1,930	5.3%	11.7%
United States of America	Second	7.76	First	45.8	First	91.5	2,589	29,738	1.3%	14.5%
Viet Nam		2.29		0.58		0.58	189	762	3.3%	13.2%
TOTAL		51.77		112.73	:	211.27				

Note 1: Wholly located outside of the 15 degrees C optimal algal growth zone

Methodological Strengths/ Weaknesses

- Method 1: Although crudely constructed, the TNO adjusted estimates have considered all the key constraints:

 -> our best near-term estimates for APEC economies.
- Method 2: With a total of <u>211 Mt</u> of algal biomass, C-limited estimates exceed Method 1's theoretical maximum (<u>204 Mt</u>) primarily because available land has not been assessed:

 unreliable without adjustments for land availability and availability of other resources, including nutrient sources.
- Large areas of coastal land are scarce and costly in most APEC economies, so availability and cost of land will need more detailed analysis in a future APEC study
- Combining several approaches is worth considering:
 - (1) Estimates of coastal land available in the APEC study by Milbrandt and Overend (2009) and others with
 - (2) GIS-based models for selecting potential sites.

APEC ECONOMIC ZONE	Land area (hectares)	Marginal Land (% of land area)	Marginal Coastal Land (ha)
Australia	769 million	13.50%	t.b.c.
Brunei Darussalam	0.6 million	1.40%	t.b.c.
Canada	983 million	3.80%	t.b.c.
Chile	72 million	13.00%	t.b.c.
People's Republic of China	940 million	5.40%	t.b.c.
Indonesia	185 million	2.00%	t.b.c.
Japan	37 million	1.30%	t.b.c.
Korea	9.5 million	1.70%	t.b.c.
Malaysia	33 million	1.00%	t.b.c.
Mexico	195 million	13.00%	t.b.c.
New Zealand	27 million	6.50%	t.b.c.
Papua New Guinea	46 million	1.60%	t.b.c.
Peru	130 million	4.40%	t.b.c.
Philippines	28 million	2.30%	t.b.c.
Russia	1,690 million	2.20%	t.b.c.
Chinese Taipei	3.6 million	2.20%	t.b.c.
Thailand	52 million	3.30%	t.b.c.
United States of America	943 million	13.00%	t.b.c.
Viet Nam	32 million	6.50%	t.b.c.

(Milbrandt and Overend, 2009)

(Source: Sandia National Laboratories)

Australia nitrogen and phosphorous (N&P) production locations colored according to potential algal biocrude production for distance from N&P location to CO2 location of no more than 200 km

(Source: Sandia National Laboratories)

(Source: Sandia National Laboratories)

Some Preliminary Conclusions

- For several compelling reasons, resources most suited to nearterm application of microalgae cultures for biodiesel production are **human**, **animal** and some **industrial wastes**.
- Eventually, the **USA** and **China** may be the APEC economies with the largest potential for growing algal biomass in sunlight for energy purposes using waste streams.
- Interestingly, **China** grows *Chlorella* in the dark, mostly for use as a nutritional supplement.
- Other APEC economies with significant potential are **Indonesia**, **Mexico** and **Thailand**.
- Australia and Chile have limited potential unless large tracts of their marginal land can be exploited profitably and sustainably.
- Even if optimistic, APEC economies are unlikely to replace more than 10–15% of their diesel use with algal biodiesel.

www.csiro.au

Energy Transformed Flagship

David Batten Low-Cost Algal Fuels Transport Technologies and Sustainable Fuels

Phone: +61 3 9239 4420 Email: david.batten@csiro.au

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176 Email: Enquiries@csiro.au Web: www.csiro.au

How Sustainable is this Pathway?

National Research FLAGSHIPS Energy Transformed