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Centralized vs Distribuited Power Systems

General advantages 
of the DPS:

• Redundancy

• Modularity

• Fault tolerance

• Efficiency

• Reliability

• Easy maintenance

• Smaller size

• Lower design cost



Microgrid operation

Microgrid operation modes:
• Grid connected

• Islanded

Typical structure of a flexible microgrid
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Microgrid operation modes
• Operation modes and transfers of the flexible microgrid and STS 

grid status supervisory

• Virtual inertias are often implemented through control loops 
known as droop method.

• Intelligent microgrids are required to integrate DG, DS, and 
dispersed loads into the future smart grid.

• Microgrids should be able to operate autonomously but also 
interact with the main grid.

• CSI units are normally used for PV or WT systems that require 
maximum power point tracker algorithms.

• VSI units are used for storage energy systems to support the 
voltage and frequency of the microgrid in island mode.

Microgrid operation
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Microgrid operation
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Islanded / Grid-connected operation
• Operation modes and transfers of the flexible microgrid and 

Static Transfer Switch (STS)

From grid-connected an islanded modes, it is necessary a smooth transition.
For both modes, the converters could work as voltage sources!

STS = OFF

STS = ON

Grid 

Connected

E= Vg

w=wg
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w=w*

P= P* ; Q=Q*

Import/export

P/Q

Islanding

Operation
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Current/Voltage

Source

Voltage

Source



Microgrid operation

Islanded operation
• Preplanned islanded operation: If any events in the main grid are 

presented, such as long-time voltage dips or general faults, among 
others, islanded operation must be started.

• Nonplanned islanded operation: If there is a blackout due to a 
disconnection of the main grid, the microgrid should be able to 
detect this fact by using proper algorithms.
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Microgrid operation

Islanded operation
• Voltage and frequency management: The system acts like a 

voltage source, controlling power flow through voltage and 
frequency control loops adjusted and regulated as reference 
within acceptable limits.

• Supply and demand balancing: In grid-connected mode, the 
frequency of the DG units is fixed by the grid. Changing the setting 
frequency, new active power set points that will change the power 
angle between the main grid and the microgrid can be obtained.

• Power quality: The power quality can be established in two levels. 
The first is reactive power compensation and harmonic current 
sharing inside the microgrid, and the second level is the reactive 
power and harmonic compensation at the PCC; thus, the microgrid
can support the power quality of the main grid.
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Microgrid Configurations

• AC-DC Hybrid Microgrid
Hierarchy of loads

Source: SMA
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Microgrid Configurations

Connection interface (CI)
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Inner control loops
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Block diagram of the closed-loop VSI.
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Bode diagram of the tracking voltage transfer function Gv(s) 

Inner control loops

Objective: closed-loop band pass filter characteristics with 0dB, 0º

P+R

P+R+H
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Inner contro loops
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Control of parallel converters

Master-slave control

• Voltage source: grid forming units

• Current source: MPPT units. WT and PV

In this system is not necessary current sharing!
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Control of parallel converters

Woo-Cheol Lee “A Master and Slave Control Strategy for Parallel Operation 
of Three-Phase UPS Systems with Different Ratings”

. . . Load

Voltage
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Im IoIsn
Is2Is1

Master-slave control
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Droop control for AC MGs

Droop control of AC systems
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Droop control for AC MGs

P. Kundur

• Synchronous generator

Equation of motion: 

Inertia constant:
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Droop control for AC MGs

• Synchronous generator transient response

oP

P

POWER

FREQUENCY

f
60 zH

TIME - SECONDS

Inertias in power system

There is a dynamic and a static droop. The static droop coeficient is P/f.
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Virtual synchronous generators

• Inverters that mimic synchronous converters

• Kawamura’s approach (2005)

High Reliability and High Performance Parallel-Connected UPS System with Independent Control
Eduardo Kazuhide Sato
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Virtual synchronous generators

European Project VSYNC: http://www.vsync.eu

Inertias means not only load-dependent frequency (droops),
but also local storage energy system.
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Droop control for AC MGs

Droop control of AC systems

• Trade-off power sharing / amplitude  - frequency regulation

Phase droops are not feasible since the initial phase of each inverter is different!
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Droop control for AC MGs

Droop control of AC systems

P

Q
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P>0
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Droop control for AC MGs

• Study of P/Q flow in function of the output impedance

Generalized droop control

The R – V virtual resistance in a DC microgrid can be see as Q – V droop in an inductive
AC microgrid.  The w – P droop is added to synchronize the system.
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Virtual Impedance

• Droop control in AC

Objective: fix the output impedance

Virtual Impedance concept 

oI

( )oZ s ( )DZ s

oV





( ) refG s v


ov

oi





P/Q 

Calculation and droop 

control

PWM +UPS 

Inverter

Current 

loop

Voltage 

loop

ZD(s)

Reference 
generator

Programable output impedance

ref
v

Inner loops

E

w

*

ov

P/Q control loops

18-Aug-11 25



Virtual Impedance

p

D

E
I

L


w
 

STTt

DfDoDfD eLLLL
/**** )(


=

Initial PLL error

Output impedance

t

( )oZ t
iZ

fZ

Z 

E 

VSI S P jQ= 

0ºV 

I

Soft-start operation

The virtual output impedance is a control variable.
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18-Aug-11 26



Virtual Impedance

Hot-swap capability

This capability allow us to connect DGs without stop the microgrid, for
mantainance reasons.

4 DG units microgrid

Virtual impedance

Output currents
Before the connection, 
a PLL have to synchronize the DG with the MG.
A the connection the virtual impedance is high to reduce the initial current peak.
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Low voltage ride-though

 Reactive power control of a grid-connected DG. 

Low voltage ride-through

Trade-off during voltage dips: 1) voltage follower (Q=0) 2) stiff voltage source (Q high) 
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Low voltage ride-though

 Reactive power control of a grid-connected DG. 

Low voltage ride-through

DG current

Grid current

Load current

Voltage dip

During the voltage grid, the converter injects reactive current (90º) 
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Low voltage ride-though

 Reactive power control of a grid-connected DG. 

Low voltage ride-through

Active power remains constant (to the load). Reactive power is injected to mantain the
voltage inside the droop characteristic.
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Hierarchical control

Hierarchical 

Control 

Principle

Enterprise Software Solution for Power Systems

Primary Control

Tertiary
Control

Secondary Control BW

Import/export power

Restoration/Syncro.

Inner loops

(droop,softstart)
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Hierarchical control

Droop control for three phase VSIs
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Hierarchical control

Virtual impedance control for three phase VSIs
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Islanding microgrids
• Grid-connected microgrids operate synchronized with the grid

• Islanded microgrids: 

 Frequency and amplitudes are load-dependent

• Secondary control can contribute to:

 Frequency restoration

 Amplitude regulation

 Power quality (harmonics and unbalance compensation)

Energy management system can be used to:

• Load shedding

• Regulation of the generator’s consumption

Secondary Control
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Secondary Control in Electric Power Systems

Power
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This area consists of DG’s with the
droop control. In island mode the
frequency can droop down! 
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Secondary Control in Electric Power Systems

Source: UCTE. A1 – Appendix 1: Load-Frequency Control and Performance
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Secondary Control for Microgrids

Secondary control action

Primary control ensures P sharing by drooping the frequency

Secondary control:
• Restore the nominal frequency
• Cannot work localy, it needs to be centralized.
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Secondary Control for Microgrids

Secondary control Implementation
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Secondary control is located in the Microgrid Central Controller measure frequency and 
voltage. The output of the control is send through communications to adjust the reference
of the local primary controllers (droops).
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Microgrid synchronization with the grid

Synchronization is not necessary to be fast. Slow (to avoid unstability problems) but
well accurate (allowing seamless transition to grid-connected mode).
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Tertiary Control

Tertiary control for AC microgrids
• Terciary control and synchronization control loops implementation
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Tertiary Control

Tertiary control for AC microgrids

• Low voltage ride-trough of the Microgrid

 Freezing or disconnecting the integral term of the E –
Q tertiary control.

 The Microgrid will work like a STATCOM

Microgrid
Q

V
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Microgrid example

Islanding detection

Islanding detection

Frequency
deviation

STS open (protection)
Q integrators
disconnected

Non-planning
Islanding
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Smart-Grids

Microgrids interconnection
Stiff grid
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Power Quality in Microgrids

Advanced Active Filtering in a Single Phase High Frequency AC Microgrid - Sudipta Chakraborty
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 Droop control allows P and 
Q sharing, averaged over the 
fundamental frequency.

 It is not able to guarantee 
harmonic current sharing!
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Power Quality in Microgrids

Harmonic current sharing
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Power Quality in Microgrids

Harmonics current sharing
• Control objective:  Harmonic current sharing 

proportional to the nominal DG power. 

• Trade off: harmonic current sharing/voltage THD

Source: Y. E. Wu
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Power Quality in Microgrids

Harmonics current sharing

• For Zline1 # Zline2, harmonic current sharing is not possible

• Harmonic virtual impedance can enhance sharing

Zh = Vh/Ih

• Trade off VTHD and harmonic current sharing.
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Gp(s)

P&Q
calculation
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Power Quality in Microgrids

Selective harmonic selection: fundamental and each of the harmonics can 
have different output impedance.

Droop control

Virtual Output Impedance with harmonic current sharing loop 
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Power Quality in Microgrids
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Power Quality in Microgrids

Harmonic current sharing

Parallel Control of the UPS Inverters With Frequency-dependent Droop Scheme
S . J. Chiang and J. M. Chang

Whole frequency range

Fundamental

Harmonics
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Power Quality in Microgrids

Droop method with virtual output impedance and selective harmonic 

DSP implementation is appropriate for the multi-loop droop framework
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(a) Nonlinear load, Y: 2 A/div, X: 5 ms/div; 
(b) Resistive // nonlineal load, Y: 10 A/div, X: 5 ms/div.

(a) (b)

Power Quality in Microgrids

Droop method for resistive output impedance
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Power Quality in Microgrids

Voltage harmonic reduction by using current harmonics 
injection
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Power Quality in Microgrids

Decentralized voltage harmonic reduction in an islanded 
microgrid

dcv

av

bv

cv

lbi

lci

aC bC cC

n

Ccv

Cbv

Cav

abc


abc


i i v v oi  oi 

SVM

Voltage 
Resonant
Controller

Current 
Resonant 
Controller

abc





Virtual 
Impedance

Loop

abc


lai

Bypass Switch

cL

bL

aL
oaL

obL

ocL

gaL

gbL

gcL

*
sync m Pww w =  

w*

Frequency droop

P

*E E nQ= E*

Amplitude droop

P

abc




abc


abc


obi

oci

oai

P Q

1w

E

1w

Three 
phase 

Reference 
Generator
E sin (wt)

syncw

cv  oi 

dcv

2av

2bv

2cv




2aC 2bC 2cC

n

2Cbv

2Cav

2aL

2bL

2cL

2Ccv

PWM

abc
Inverter 2 Control System

abc
 abc



2li 

abc


2Cv 
2oi 

Nonlinear

Load


PLL

2lai

2lbi

2lci

Power 
Calculation







Harmonic
Compensation

2oai

2obi

2oci

D

Inverter 1 Control System

*

HCI

235uF
84uH

100W

18-Aug-11 54



Power Quality in Microgrids

Decentralized voltage harmonic reduction in an 
islanded microgrid

Before Compensation After Compensation

THD% 5th % 7th % THD% 5th % 7th %

Voltage DG1 3.8 2.9 2.0 1.2 0.6 0.5

DG2 2.9 2.1 1.5 1.1 0.5 0.4

Load 5.3 4.2 2.8 3.2 2.3 2.0

Current DG1 58.6 53.7 22.9 87.6 75.2 44.1

DG2 45.8 41.5 18.8 44.5 38.1 22.5

Load 52.2 45.6 20.9 66.1 56.7 33.3
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Secondary control for voltage harmonic distribution 

in islanded microgrids
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Test system for secondary harmonic compensation
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Secondary control for voltage harmonic compensation
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(a) Before amplitude restoration and harmonic compensation

(b) After amplitude restoration (no harmonic compensation)

(c) After amplitude restoration and harmonic compensation



Unbalance in Microgrids

Voltage unbalance definition

,

,

rms
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Voltage unbalance factor (UF) is considered as the index of unbalance. 

UF can be defined as follows:

where and are rms values of negative and positive 

sequences of the DG output voltage. 
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Unbalance compensation for a grid-connected DG
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Unbalance compensation for a grid-connected DG

DG output Voltage
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Unbalance in Microgrids

Decentralized unbalance compensation for a microgrid
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Unbalance in Microgrids

Decentralized unbalance compensation for a microgrid

Voltage after and before compensation

Unsymmetrical line 
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Unbalance in Microgrids

Secondary control for unbalance compensation in 

islanded Microgrids
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Unbalance in Microgrids

 
     (a) 

 
     (b) 

 
     (c) 

 
    (d) 

 
     (e) 

 
     (f) 

  

Fig. 8.  Three-phase voltage waveforms 
(a) PCC-before comp. (b) PCC-after comp. 

(c) DG1-before comp. (d) DG1-after comp. 

(e) DG2-before comp. (f) DG2-after comp. 

Three-phase voltage waveforms

PCC

DG1

DG2

BEFORE COMPENSATION AFTER COMPENSATION
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Power Quality in Microgrids

Conclusions

• Voltage harmonics in microgrids can be reduced by injecting current harmonic 
or adjusting harmonic voltage in the DG terminals

• Secondary control can be used to close the loop of the harmonic voltage 
compensation in the microgrid

• Tertiary control can be used to reduce the current harmonics injected by the 
microgrid to the grid

• A ponderated trade off between the secondary and tertiary controls have to be 
designed

• Unbalances in microgrids can be reduced by injecting a voltage negative 
sequence in the DG proportional to Q negative sequence

• Secondary control and tertiary control for unbalance compensation can be 
used for islanding and grid-connected microgrids.

• Reactive power have to be limited and ponderated for harmonics and 
unbalance compensation.
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Source: “Distribution Voltage Control for
DC Microgrid with Fuzzy Control and Gain-Scheduling Control,”  H. Kakigano et Al.
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SOC1 – SOC2 PS1, PS2

Adaptive droop control:

DC:     V=V* - (k/SoC)Io

AC:     w=w* - (k/SoC)P

Extended Kalman Fiters are used to obtain the SoC of the batteries.
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