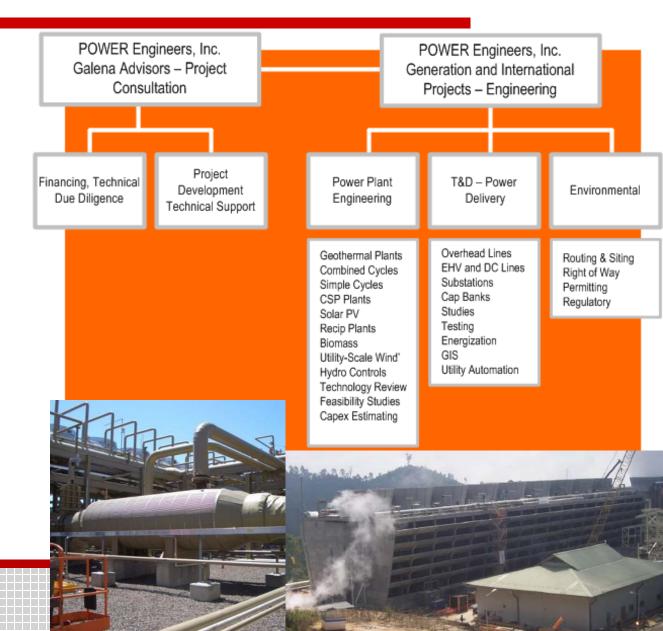
2013 APEC Geothermal Conference

Geothermal Power Plant Development

Basic technology, technical challenges, and lessons for developers

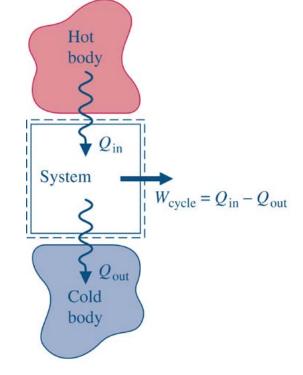


Perspective

- POWER
 Engineers
- 750+ MW of flash and binary geothermal experience
- Spanning OE, IE, and detailed design roles
- Your speaker –
 Kevin Wallace

Objectives – let's build up

- General power plant technologies and relative merits
- 2. Types of technical challenges and plant configuration options
- Types of development challenges and lessons learned
- 4. Need flexibility due to resource uncertainty

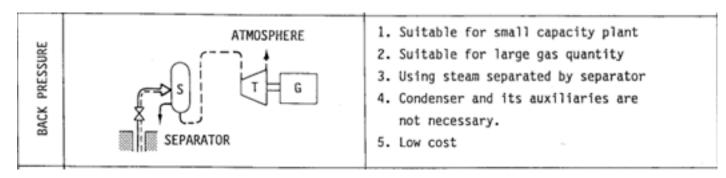


The Basic Basics - Technologies

POWER Engineers, Inc.

Our Favorite Fundamental Equation

- Heat engines receive energy at a high temperature, reject it at a low temperature, and produce net work from the difference
- Results in the (ideal) expression:

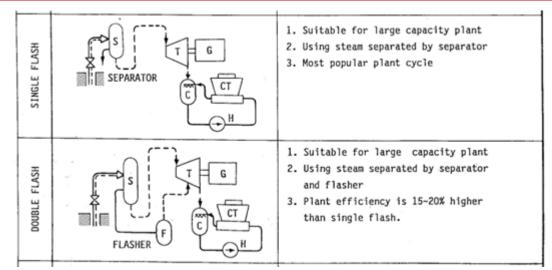


Moran & Shapiro, Fundamentals of Engineering Thermodynamics

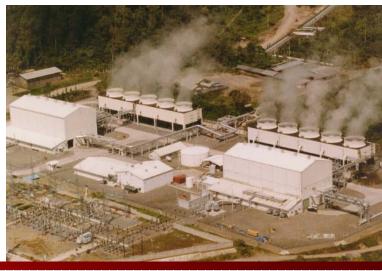
Power
$$\propto Energy in * \left(1 - \frac{T_C}{T_H}\right)$$

Basic Cycles - Backpressure

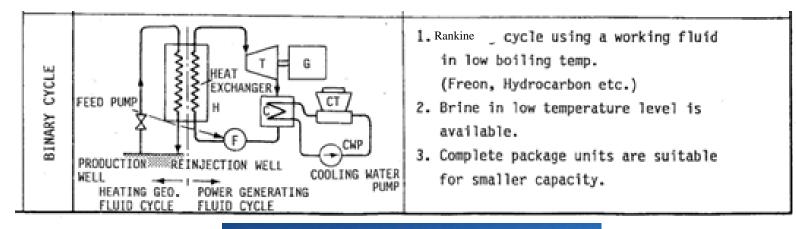
(MHI, Geothermal Power Generation)


Miravalles PGM-29 (Costa Rica)

San Jacinto 2 x 5 MW (Nicaragua)

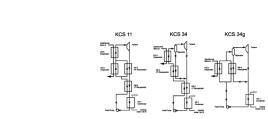

Basic Cycles – Flash/Condensing

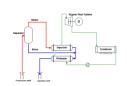
Miravalles III

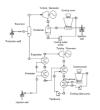

Mindanao I/II

POWER Engineers, Inc.

Basic Cycles - Binary

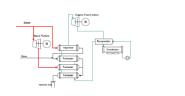

TAS unit at Beowawe

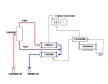

POWER Engineers, Inc


8

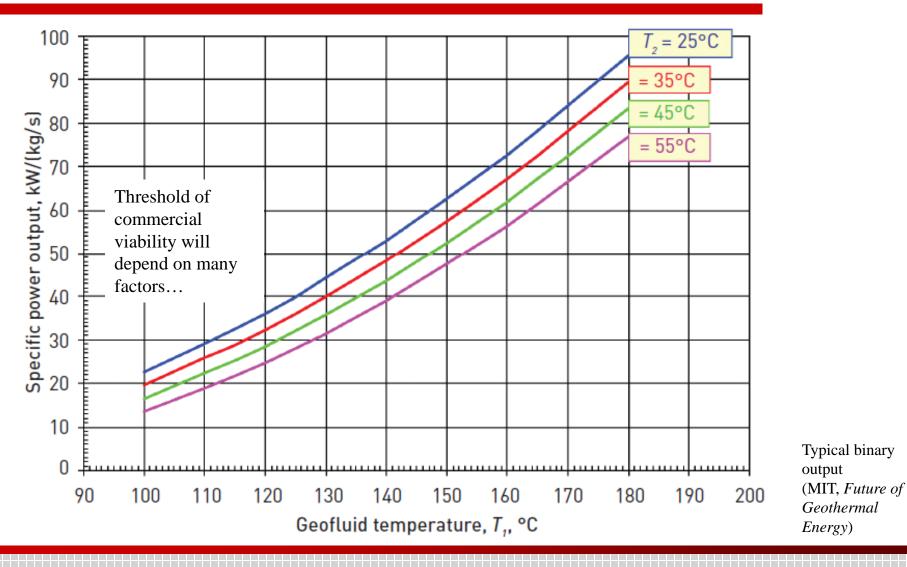
The Dizzying Array of Binary Cycle Choices

- Customization is worth it
- Bigger is better, unless it isn't
- Consider O&M





> Combine standardization with flexibility



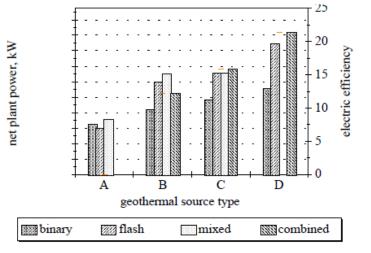
(Mlcak, 2002) (Swandaru and Palsson, 2010) (Kaplan, 2007)

Specific power output

POWER Engineers, Inc

 $-\frac{T_C}{T_H}$

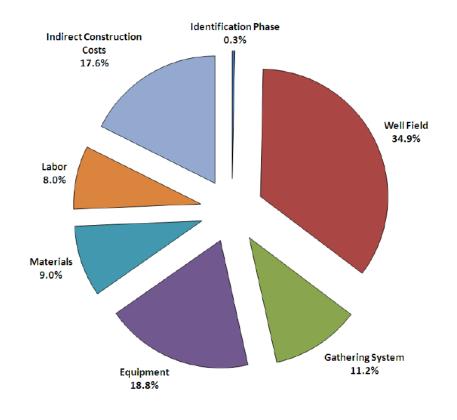
Power \propto Energy $_in*$


If we understand the basics,

we can understand cost and technology selection drivers

Screening options

- Prefeasibility studies might compare plant options on the bases of:
 - Resource 'fit'
 - Cost/kW (plant and project)
 - Net output
 - Land usage
 - Water usage
 - Equipment marketplace
 - Permitting considerations

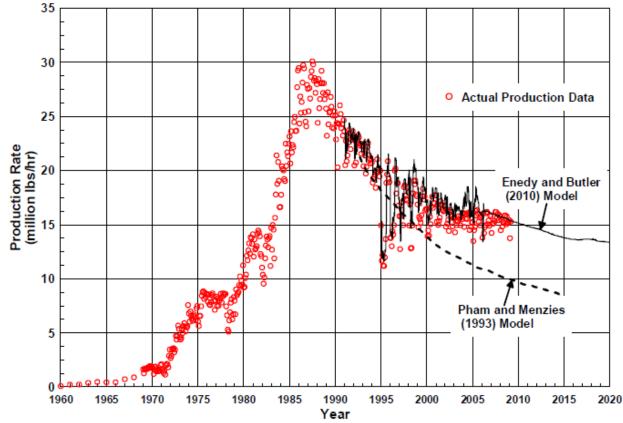

(Performance comparison by Bombarda and Macchi, 2000)

(Indicative 50 MW plant costs by ESMAP, 2012)

PHASE / ACTIVITY		LOW ESTIMATE	MEDIUM ESTIMATE	HIGH ESTIMATE
1	Preliminary Survey, Permits, Market Analysis ¹⁶	1	2	5
2	Exploration ¹⁷	2	3	4
3	Test Drillings, Well Testing, Reservoir Evaluation ¹⁸	11	18	30
4	Feasibility Study, Project Planning, Funding, Contracts, Insurances, etc. ¹⁹	5	7	10
5	Drillings (20 boreholes) ²⁰	45	70	100
6	Construction (power plant, cooling, infrastructure, etc.) ²¹	65	75	95
	Steam Gathering System and Substation, Connection to Grid (transmission) ²²	10	16	22
7	Start-up and Commissioning ²³	3	5	8
	TOTAL	142	196	274
	In US\$ Million per MW Installed	2.8	3.9	5.5

Project capital cost Significant sensitivities

- Project size
- Resource quality
 - Production
 - NCGs
 - Solids
- Ambient conditions
- Project structure


Sample project cost breakdown (EPRI, 2010)

Let's explore some major cost/challenge drivers in more detail starting with:

Resource Production Uncertainty

POWER Engineers, Inc

Case Study - Geysers

Where are you in your development?

Where will you be?

Sanyal and Enedy (2011)

Strategies for Resource Uncertainty

- Accurate characterization
- Appropriate sizes of development increments
- Coupled resource/plant management
- Makeup well drilling program
- Injection strategies
- Plant design margins for resource decline (P,T, mass)
 - Additional Heat Exchanger Surface Area or Cooling Equipment
 - Multi-configuration NCG Systems
 - Variable Speed Drives for Process Equipment
 - Partial Arc Admission or Variable Guide Inlets Vanes

Solids and Injectivity

POWER Engineers, Inc

Solids challenges

Plant Equipment Scaling

Injection Well Scaling

Binary heat exchanger scaling

Managed with injection temperature limits

Managed with O&M procedures

Injection well silica scaling

Managed with pH modification

Managed with CRC process

POWER Engineers, Inc

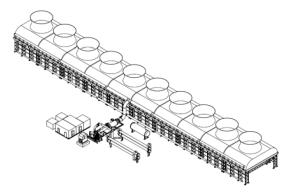
EnergySource

Strategies for Solids/Injectivity

- Accurate geochemical assessment
- Binary heat exchanger fouling and cleaning provisions
 - Multiple Trains
- Production well scale inhibitors
- Injection well scaling control
 - Appropriate injection temperature limits
 - PH-mod and scale inhibitors
 - CRC process
- Weigh costs: lost production, chemical, equipment, O&M

Ambient Conditions

$$Power \propto Energy in * \left(1 - \frac{T_C}{T_H}\right)$$


POWER Engineers, Inc.

Strategies for Ambient Condition Uncertainty

- Site monitoring temperature, humidity
- Wind rose. Beware the hot wind.
- Allowances for climate change
- Reliability of local long-term data
- Design point/PPA considerations
- Cooling system options
- Start early, developers!

ACCs at Steamboat (Google Earth)

Project Management Challenges

Project Management Challenges

Financing exploration and drilling	Cross the 'Valley of Illiquidity'
Characterizing the reservoir and appropriate development size	Intel, intel, intel
Determining appropriate project structure (EPC, D/B, BOT, BOO, etc)	Make your 'first cast' the best
Construction and generating cash flow	Execute with deliberate speed
Managing reservoir and O&M costs	Monitor reservoir and plant performance with diligence

Summary Considerations

- A wealth of exploration techniques and geothermal plant technologies are available
- Imperative to have accurate resource characterization
- Consider strategies to address *technical* challenges
- Consider strategies to address *project management* challenges

Thank you for your attention!

Any questions? Please contact:

Kevin Wallace Senior Project Manager kwallace@powereng.com (208) 788-0564

Stillwater (ENEL)