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Outline of the presentation

» This presentation reviews geoscientific disciplines used in exploration
stages of geothermal project development, and assessment of risk.

« Highlights exploration techniques used for resource characterisation.

« Stresses the value of integrating all geoscience disciplines as the key to
successful development of geothermal resources.
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Key to Successful Low Risk Development

Rigorous scientific studies at reconnaissance and exploration stages

Integration of data from all disciplines (geology, geochemistry, geophysics)

» Recognition of hazards or barriers to development

Conceptual models to be tested and refined by more detailed work
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New Zealand Geothermal Scene

* Government dedicated to greater use of renewable energy resources

* ~830MWe base load electricity generation; ~15% of generation

Sixth for installed geothermal electricity generation capacity

* Increasing uptake of direct heat use — esp. GSHP
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Anatomy of TVZ Geothermal Systems
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Geothermal System : A transfer of heat energy to the earth's surface. 23
Geothermal Energy : A resource utilised for heating or other direct uses (residential, industrial) or electricity generation.
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No geothermal resources are identical

All geothermal systems have features
that make for easy development, and
other features that are a disadvantage

Integrate all resource data,
to understand the system

Establish geoscience strategy
that aids decision making

Does the area have geological, geochemical and geophysical |
characteristics consistent with a prospective geothermal system?




Sustainable Geothermal Development

Primary considerations :

1. sustainability of the geothermal
reservoir...., avoiding detrimental
impacts by maintaining the reservoir
and surface character of the field

and

Wairakei-Geothermal-Field

2. maximising the use of the geothermal energy, whilst minimising
risk factors

(generating the highest possible income at the lowest operation and
maintenance cost to the developer).




Geothermal Development Flow Chart

Resource prioritization

| Individual field and surface
Inventory assessment

Surface exploration
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By combining geological, chemical and geophysical survey data, the
geoscience team able to establish a conceptual hydrological model,
which is updated through exploration and field development stages.

Exploration drilling is the final step to prove economic temperature and
permeability, and resolve the deep stratigraphy and reservoir chemistry.



1. Chemical Surveys

Geochemical data important to help define system
boundaries and identify possible up-flow zones

« Mapping thermal features (geodiversity)
» Characterise the fluid & gas chemistry (fluid sources)
* Obtain baseline data on non-thermal fluids

« CO, flux and ongoing monitoring surveys

 ldentify development-limiting chemical
components (scaling? corrosion?)

Obtain first temperature estimates of the
resource (c.f. geothermometry)

Build hydrological model of the system

11



Fluid Types — Surface Manifestations

Interpretations of water chemistry requires an understanding of
end-member types, and methods by which they were formed
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Geothermometry

Estimate reservoir temperature using water/gas chemistry data

Based on field-observed correlations and theoretical data
Each geothermometer has limitations

Used to monitor changes in developed geothermal fields
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2. Geothermal Geology

Geological activities divided into two parts:

(i)Geology which takes place before drilling

(e.g. map geology / stratigraphic relationships, surface
hydrothermal alteration and manifestations)

(i) Geology undertaken during / after drilling

|dentify geotechnical issues / geohazards
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Structure — Fracture Imaging

To predict permeability controls in the geothermal reservoir

Evidence of rejuvenated structural permeability

» Lateral outflows
» Air photography — radar imagery — fracture mapping
» Map structural lineations — thermal features

Within the sub-horizontal (TVZ) stratigraphy,
the most productive zones coincide with wells
that intersect steep dipping fractures
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Evidence for system change

* Change in surface thermal activity (time and space)

(e.g. surficial features that are not in equilibrium with current fluids)

* Record in hydrothermal alteration mineralogy

* Changes in fluid inclusion data with time (e.g. salinity and

temperature - depth of erosion, fault displacement etc)

e Alteration minerals out of step with current T-X conditions
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3. Geophysical Investigations

* Mainly to assess the dimension (extent, thickness) of reservoir
 Likely to postdate initial chemistry/geology surveys

 May provide information on:

- reservoir structure (shallow or deep,
upflow zones, lateral outflows)

- likely location of productive zones
- natural heat balance

and, in a more regional sense...,

- the geological setting of the system

Schlumberger apparent resistivity T
Mokai geothermal system, AB/2=500m
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Geophysical Methods

Understanding heat balance of the system
* Heat flow surveys

Measure heat discharges (convective, conductive,
evaporative) from active manifestations
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Geophysical Methods

Distribution of surface/shallow temperatures
Geological setting and structures (local/regional)

 Remote sensing Infra red image

IR imagery (satellite data, aerial surveys), Satellite and aerial photos,
Spectral imaging, Radar altimeter, LIDAR

The success of any geophysical investigation depends on applying theib,e
combination of techniques in the correct sequence to explore a prospe
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Geophysical Methods
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Geophysical Methods

e Magnetics
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Geophysical Methods

Mokai Geothermal Field

e Resistivity

TVZ Schlumberger apparent resistivity
AB/2=500m (GNS data)

The success of any geophysical investigation depends on applying th.e"b.e' by
combination of techniques in the correct sequence to explore a prosg
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Geophysical Methods

Recording natural electromagnetic waves at ground surface
over a wide range of frequency
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3D MT model, Coso Geothermal Field (Newman et al., 2008)

The success of any geophysical investigation depends on applying th.e_"b‘e_'
combination of techniques in the correct sequence to explore a prospect™

18



3D MT Inversion Model of Southern TVZ




Geophysical Methods
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From Yukutake et al. (2008)

“Active seismic” (shot point) - “Passive seismic” (natural
seismic signal) surveys - micro-earthquake surveys.

The success of any geophysical investigation depends on applying the'—b_e_ﬂ' 3o
combination of techniques in the correct sequence to explore a prospect™
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Conceptual (hydrological) Model

* Chemical / hydrological structure of the geothermal system

* Hydrological model evolves as
more information comes available.

+ geophysically-defined
+ geological control on fluid flow

+ chemical structure (e.g. reservoir
conditions, flow path, temperature,
magmatic fluids)
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Which Hydrological Model ?
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Resource Capacity Assessment

Resource Area
Surface Heat Flow
Resource Temperature
Controls on Fluid Flow
Reservoir Chemistry

Estimate total resource capacity

eHeat Flux Method

Natural heat flux of the system,
derived from physical estimates

eAreal Method

Estimate development size from
areal extent, multiplied by power
density factor (8-10 MW/km?2)
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Geothermal Risk Assessment

Assess / mitigate risks that could threaten viability of development

Consequences of some risks, may prove fatal to development(s).

As exploration progresses, level of confidence in resource increases

How probable that a constraint will apply during project lifetime?

= Conceptual Model « = Development Strategy
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Exploration Drilling Programme

* Test surface exploration model - confirmation of resource extent and
potential, at reasonable cost (ideally commercially productive).

* First well sited on basis of hydrological model, with clear objectives
(e.g. test high temperature zone, permeability structure of the field)

e Qutcomes/drilling strategy assessed . = Development Strategy
(a) drill second / third well as planned
(b) change strategy of next well,

(c) postpone / abandon project.

* Drilling costs reduced by drilling :
(a) shallow (“temperature gradient”) holes
(b) slimholes (later drill full diameter wells)
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Resource Evaluation Outputs

* Conceptual (hydrological, and
geological framework) Model

* Assessment of Energy Reserve
and Sustainable Resource
Capacity.

leapfrog &~ Wairakei Geothermal Field £

* Steady State Model (if possible,

based on well data).

* Models for various development
scenarios (include effect of
resource use on existing field
activities and surface features).

Tough?2 grid
Numerical (simulation) model
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Summary

1. Design geoscience strategy that aids decision making.

2. Geoscience input ongoing in field exploration, delineation and
development stages.

3. ldentification of positive resource attributes, and issues that could
have a detrimental impact on resource development / use.

4. |dentifying / understanding controls on permeability s key !

5. Sound geoscience advice early (and ongoing) has potential to save
time, resources and money later ....
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