

World's leading organization in oil management

The Policy and Quality Issues of Biodiesel in Korea

Energy Situation in Korea

World Rankings

➤ 10th in Energy Consumption

- ➤ 9th in Petroleum Consumption
- ➤ 97% Dependence on Foreign Energy

> 7th in GHG Emission

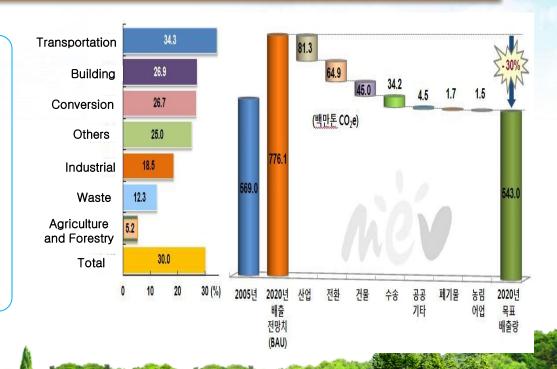
Energy Security

- 2nd Master Plan for National Energy('14)
 - Renewable Energy 11%(~'35)

GHG Reduction

- National GHG Reduction Target ('09)
 - BAU 30%('20)

Need to Expand the Supply of Renewable Energy (The Main Policies: RPS, RFS, RHO)


5

National GHG Reduction Target('09.11) and Road map('14.1)

Low Carbon Green Growth Act

- > GHG Reduction Target: 30% Based in BAU by 2020 (09.11.17)
 - The highest level in developing countries
- Amount of GHG emission by 2020: 569 million ton(in case of GHG 30% reduction)
 (Estimates of GHG emission without any effort to reduce by 2020: 594('05) →813 million ton)
- National GHG Reduction Road Map (ME, Jan. 2014)
 - Main Content: 34.3% reduction in the transport sector by 2020
 - Promotion Strategy: Green Traffic
 Policy, Promote Energy Efficiency,
 Introduce Green Car,

Expand Biofuels

2nd Master Plan for National Energy (Renewable Energy

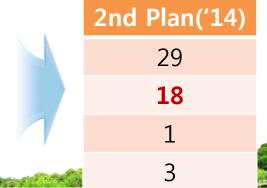
Sector)

Increase

Renewable Energy Target 11% (by 2035)

[Unit: %]

	′12
Wind Power	2.18
Solar Light	2.68
Solar Heat	0.30
Geothermal Heat	0.74


1st Plan('08)
13
4
6
4

I	2nd Plan('14)
	18
	4
	8
	9

Decrease

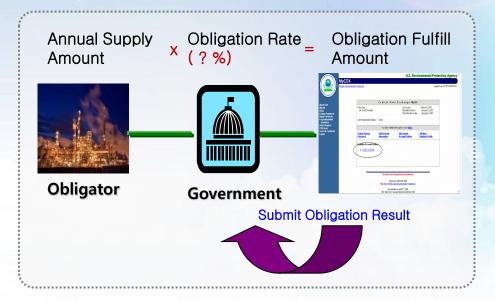
	'12
Waste	67.77
Bio	15.08
Ocean	1.11
Water Power	9.21

1 st Plan('08)	
33	
31	
5	
4	ě

The Obligation Policy for the Promotion of Renewable

Energy

RPS Power Sector (From Jan., 2012)

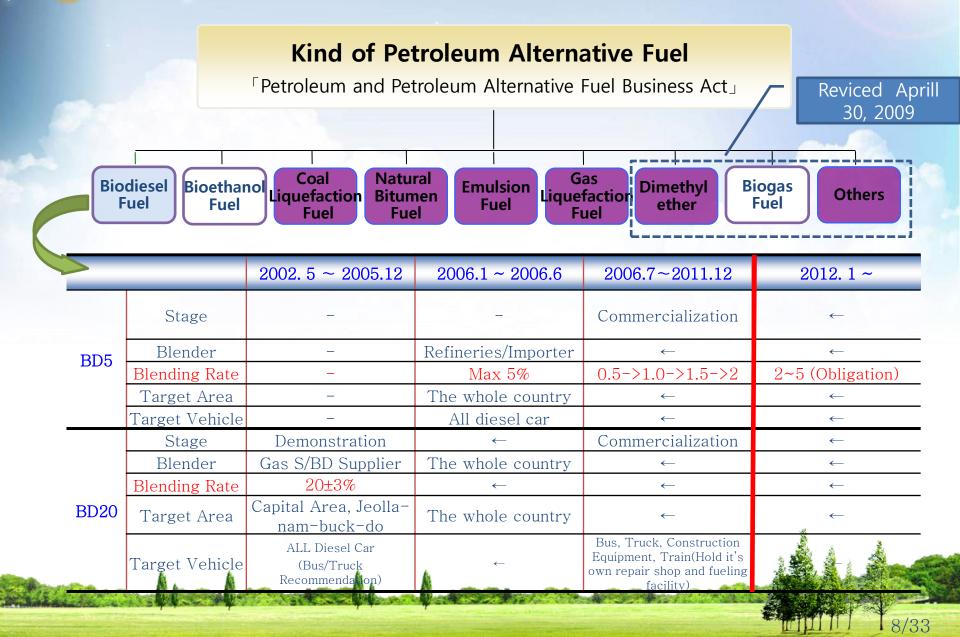

RFS Bio fuels

Transport Sector (From July, 2015) Heat Sector (From 2016, under review)

- RPS: Renewable Portfolio Standard

- RFS: Renewable Fuel Standard

- RHO: Renewable Heating Obligation


➤ Solid: Wood Chip, Wood Pellet, etc.

➤ Liquid : BD, BE etc.

➤ Gas: Biogas, etc

Kind of Petroleum Alternative Fuels in Korea

5

Main Alternative Fuels based in Petroleum Products

Alternative Fuels

Diesel

Biodiesel

* Commercialized, HBD(Actual Assessment Stage), BTL etc.(under R & D)

Gasoline

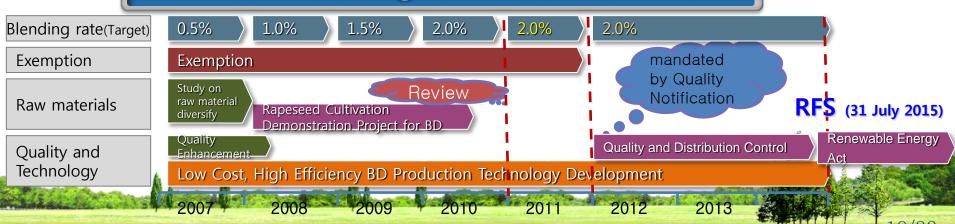
Bioethanol

* Demonstration Stage, Biobutanol and Cellulosic Bioethanol, etc.(under R & D)

CNG

Biogas

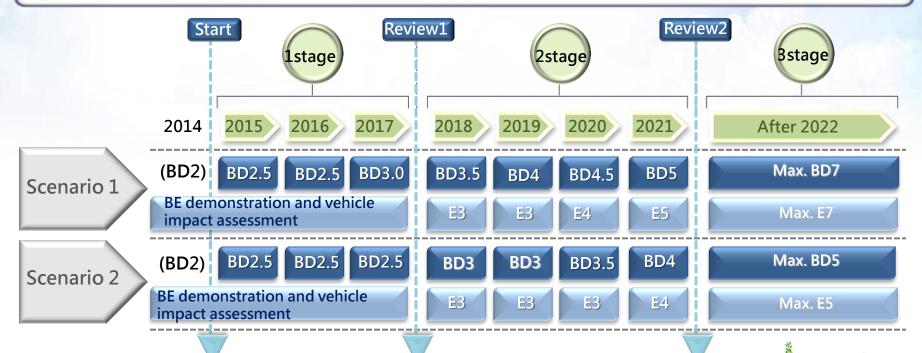
* Supplied to City Gas, under R & D for Transport



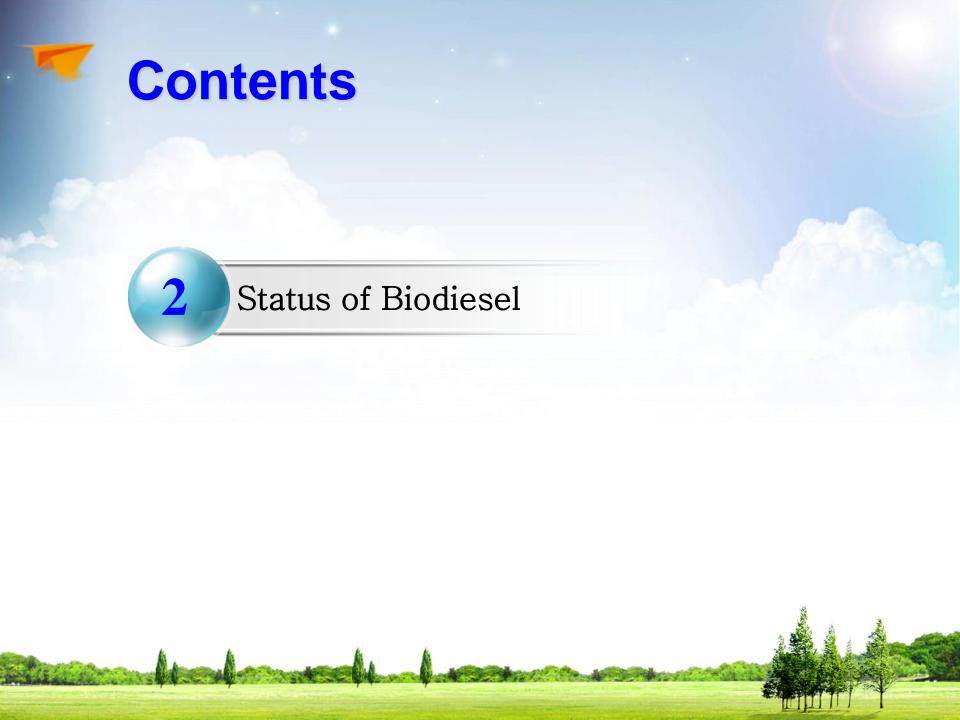
Implementation Status of Petroleum Alternative Fuels

	Biodiesel	Bioethanol				
2004	- BD 20 Demonstration Project (2002~2005)	BE and ETBE are permitted as gasoline oxygenate				
2006 ~ 2008	 BD Commercialized in July 2006 In 2007, 1st Biodiesel Medium and Long Term Dissemination Plan Increase the BD blending ratio from 0.5→2.0% with exemption * Voluntary agreement between the government and refineries 	BE Actual Assessment Project(2006~2008)				
2009 ~ 2010	- Study on Introduction of RFS(Renewable Fuel Standard) into Korea					
2011	- 2 nd Biodiesel Medium and Long Term Dissemination Plan . The mandating the BD 2~5% by the diesel specification from 2012 with taxation					
2012 ~ 2013	- RFS Operation Scheme Study ('12.5~'13.3)/RFS Proclamation('13.7.30)/RFS Implementation('15.7.31) - Study on Detailed Scheme of BE Demonstration Project ('13.5~'13.12)					
2014 ~	- Preparing the RFS Sub-legislation (Enforcement Ordinance, Enforcement Regulation and Notification)					

BD Medium and Long Term Dissemination Plan



5


Scenario of Biofuel Obligation in Korea

RFS Public Hearing('13.2)

- The BD is the first to be introduced in 2015
- The bioethanol and biogas will be reviewed in 2017
- This scenario is changeable before starting RFS

Review of biogas introduction Review of bioethanol introduction

구 분

Subtotal

Total

Domestic Ratio(%)

Status of Supply and Demand of Biodiesel Feedstock

[Unit: 1,000ton]

'13

12

- Main BD Feedstocks are Domestic Waste Oil and Imported Palm Oil
- Domestic Feedstock Ratio was 38% in 2013

'08

'09

203

28.1

206.2 282.2

280

358

21.8

272

384

29.2

264

385

31.4

263.5

427

38.3

10

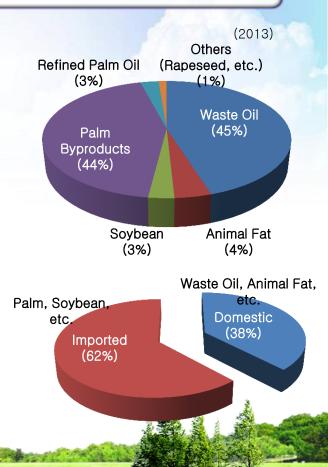
11

'06

46

62.4

26.3


'07

	Waste Oil	16	36	57	77	78	109	121	150
Domes	Animal Fat	-	-	-	-	-	-		13
tic	Others	0.4	-	0.1	2.2	-	3	-	0.5
	Subtotal	16.4	36	57.1	79.2	78	112	121	163.5
	Soybean	46	62	69	52	80	34	19	12
	Palm Byproducts			30	63	102	115	136	187
	Refined Palm Oil	-	0.2	34	59	69	74	62	12
Import	Waste Oil	-	-	0.1	16	25	35	38	44
ed	Animal Fat(Tallow)	<u>-</u>	-	-	-	-	-	-	3.2
	Others(Rapeseed etc.)	_	1.3	16	13	4	14	9	5.3

63.5 149.1

99.5

36.2

Biodiesel Distribution Structure

✓ Distribution

- B2~5 is manufactured by refiners and supplied to gas station
- B20 is manufactured by BD Co. and supplied to bus, truck and construction equipment operators who are equipped with certified storage tank and self-repairshop

BD suppliers(15)

Refiners(4)

Gas Station Diesel (BD2)

10% during winter season(11/1~3/31)

Bus, truck and construction equipment operators who are equipped with 'certified storage tank' and 'self-repair shop'

Costumer

Status of Biodiesel Production and Consumption

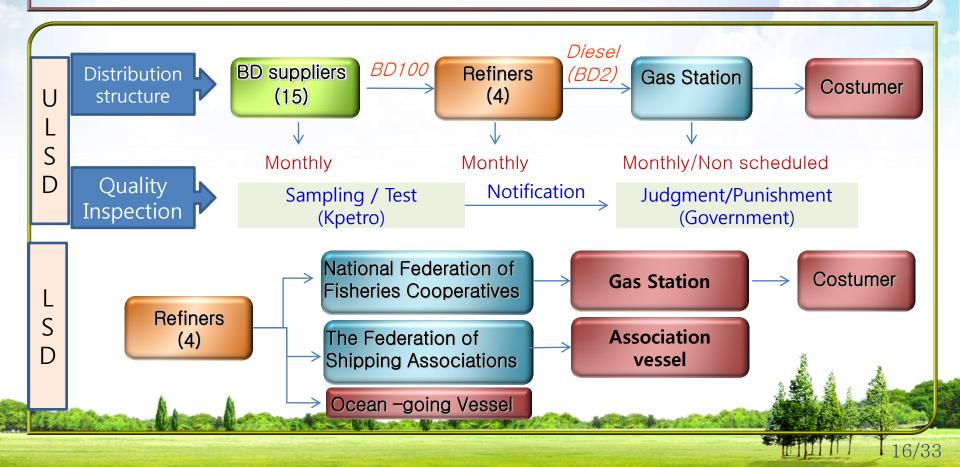
- 15 Domestic BD Companies (Production Capacity.: 1.2 million kL) in Korea
- Only 9 BD Companies are Supplying to Refineries (supply amount: 400 thousand

• Since July 2006, Consumption of BD5 was about 2,213,000kL

	2006.7~ 2006.12	2007	2008	2009	2010	2011	2012	2013
B100(1,000KL)	46	109	195	288	395	389	398	393
Blending Rate(%)	0.5	0.5	1	1.5	2	2	2	2

Rate(%)

• Since July 2006, Consumption of BD5 was about 5,400kL


구분	2006.7~ 2006.12	2007	2008	2009	2010	2011	2012	2013
B100(1,000kL)	3.7	0.2	0.3	0.3	0.3	0.3	0.2	0.1
Blending	20(10 four mint ou)							

15/33 ، بريمونس

Diesel Quality Inspection Process

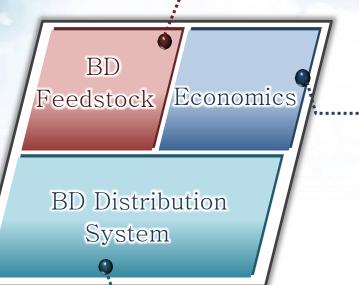
- ✓ Distribution/ Inspection
- ULSD is distributed for automobile mixed with 2% BD
 - The BD suppliers and Refiners are inspected monthly and the gas station monthly and non scheduled
- HSD is distributed for vessel without BD

Biodiesel Quality Specification

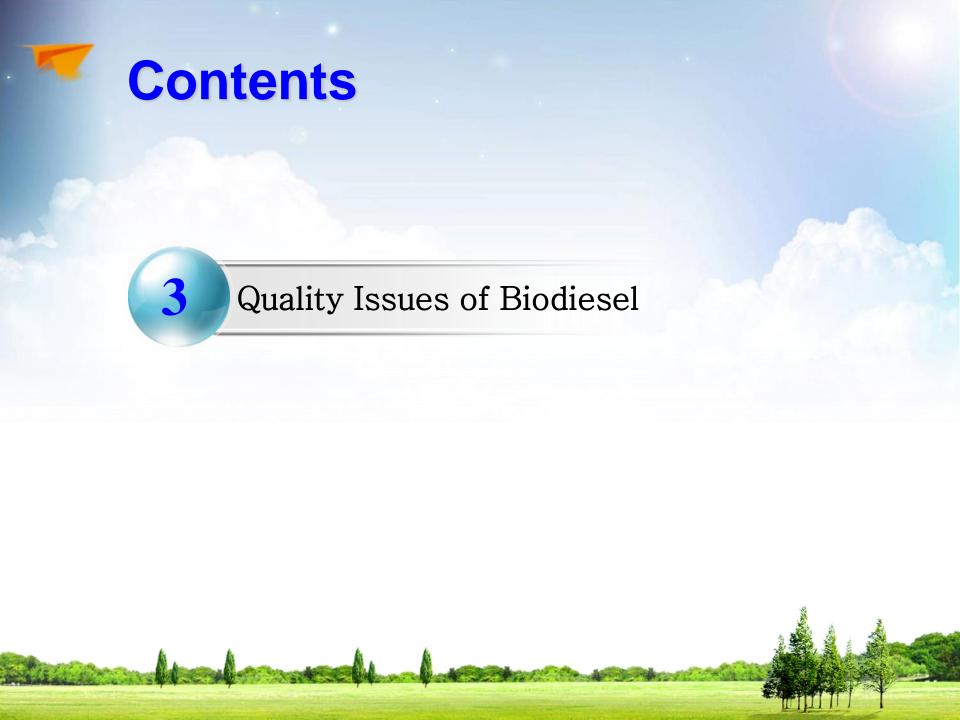
- The BD Spec. is a little difference with Taiwan
- The CFPP act as prevention of palm oil in winter season
 - * Palm oil BD has over 10°C CFPP

Properties		Spec. (Different Spec. with Taiwan)	Test Method
FAME(wt%)	Min.	96.5	EN 14103
Flash Point(°C)	Min.	120 (101)	KS M ISO 2719
Kinematic Viscosity (40°C, mm²/s)		1.9 (3.5)~ 5.0	KS M 2014
Carbon Residue (wt%)	Max.	0.1 (0.3)	KS M ISO 10370
Sulfur Content (mg/kg)	Max.	10	KS M 2027
Ash (wt%)	Max.	0.01 (0.02)	KS M ISO 6245
Copper Strip Corrosion (50°C, 3h)	Max.	1	KS M 2018
CFPP (°C)	Max.	0	KS M 2411
Density (15°C, kg/m²)		860 ~ 900	KS M 2002
Moisture (wt%)	Max.	0.05	KS M ISO 12937
Sediment (mg/kg)	Max.	24	EN 12662
TAN (mg KOH/g)	Max.	0.50	KS M ISO 6618
Total Glycerol (wt%)	Max.	0.24 (0.25)	KS M 2412
Monoglyceride (wt%)	Max.	0.80	KS M 2412
Diglyceride (wt%)	Max.	0.20	KS M 2412
Triglyceride (wt%)	Max.	0.20	KS M 2412
Free Glycerol (wt%)	Max.	0.02	KS M 2412
Oxidation Stability (110°C, h)	Min.	6	EN 14112
Methanol (wt%)	Max.	0.2	EN 14110
Alkali Metals (Na + K)	Max.	5	EN 14108, 14109
(mg/kg) (Ca + Mg)	Max.	5	EN 14538
Phosphorus (mg/kg)	Max.	10 (4)	EN 14107

^{*} CFPP is applied to the winter season (11. 15. \sim 2. 28)

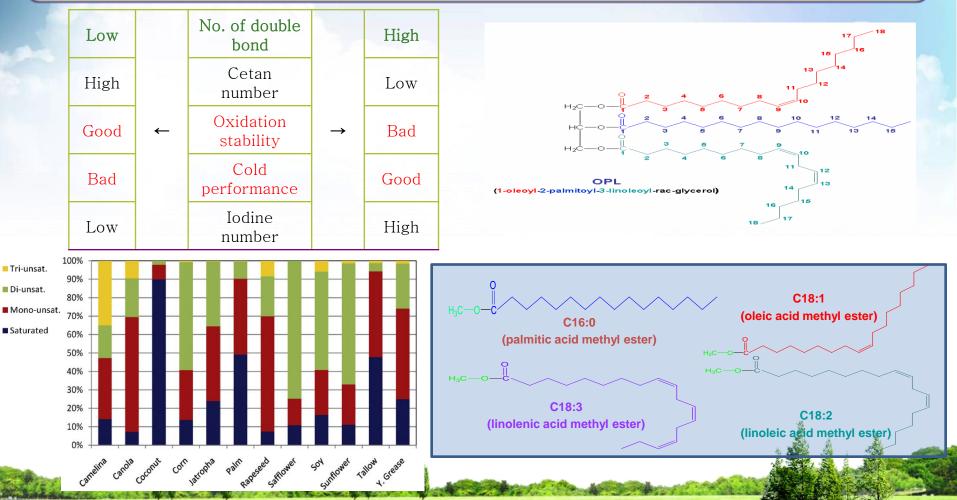

5

Diesel Quality Specification


- The BD content has been 2~5 vol% from 2012(mandated over 2%)
- The serious cold performance problems(startability and driveability) occurred in 2010
 - •There were many reasons such as cold weather, diesel quality, BD blending ratio, vehicle battery capa., fuel filter position, and etc.
- The CFPP and Pour point were intensified (CFPP: from -16 ℃ to -18 ℃ on Nov. 2011, PP: from -17.5 ℃ to -23 ℃ on Jan. 2014)

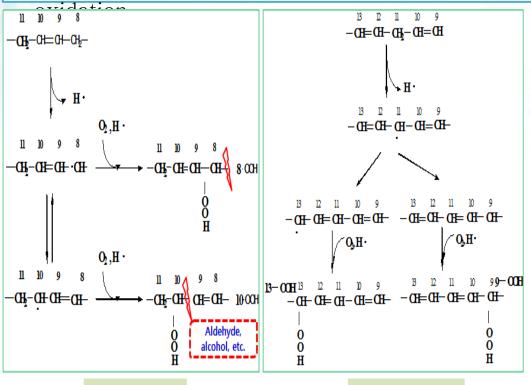
Properties	For automobile	For vessel	
Pour Point (°C)	Max.	0.0	0.0
` '		(Winter : -23)	(Winter : -12.5)
Flash Point (°C)	Min.	4	0
Kinematic Viscosity (40°C, mm ² /s)		1. 9 ~ 5.5	1.5 ~ 6.0
Distillation (90 vol%, °C)	Max.	360	-
Carbon Residue in 10% Residual Oil (wt%)	Max.	0.15	0.20
Water & Sediment (vol%)	Max.	0.0	02
Sulfur Content (mg/kg)	Max.	10	0.05(wt%)
Ash (wt%)	Max.	0.02	0.01
Cetane Number (Cetane Index)	Min.	52	40
Copper Strip Corrosion (100°C, 3h)	Max.	1	
CFPP (°C)	Max.	-18	-
Lubricity@60°C (HFRR WSD, μm)	Max.	400	-
Density@15°C (kg/m³)		815 ~ 835	-
Polycyclic Aromatic Content (wt%)	Max.	5	-
Aromatic Compound Content (wt%)	Max.	30	
Biodiesel Content (vol%)		2 ~ 5	-
Color		_	Red

Issues of Biodiesel

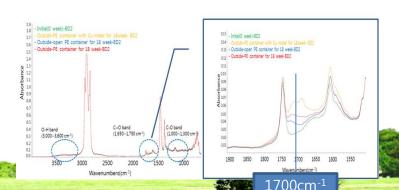

- Most of Feedstocks depend on Importation except waste oil
 - Need to develop utilization technology of domestic sources
 (waste oil, animal fat, micro algae, etc.)
 - -Need to develop overseas plantation
- BD Price is expansive 1.1 times[934won/ 1,150won) than Diesel occupying mostly the Feedstock cost at over 70%
 - Need to develop utilization technology of low price and high acid feedstocks (Byproducts of Palm Oil and sewage sludge, etg.)
- Most of the BD suppliers are lack of surplus funds
- The long-term investment is difficult because of the annual BD supply contract system.

Main Qualities of Biodiesel

- The most critical BD qualities are cold flow and oxidative stability
- These properties depend on the degree of unsaturation
 - lower degree of unsaturation lead to poorer cold flow property, but better oxidative stability



SOURCE: 'Review of biodiesel compositions, properties, and specifications' Renewable and sustainable and susta



Oxidation mechanism of Biodiesel

- > The oxidation stability is strongly affected by the degree of unsaturation
- ➤ When using purified methyl ester of stearic acid(C18:0), oleic acid(C18:1), linoleic acid(C18:2), linolenic acid(C18:3), the relative rates of oxidation is to be 1:10:100:150
- > The properties are also changed according to the oxidation progress
- > The FT-IR spectrum at 1700cm⁻¹ goes up with increasing the oxides produced by

Properties	Change
Cetane No.	Increase (the Organic peroxides)
Density/Kinemati c viscosity	Increase (Poly condensation materials)
TAN	Increase(Oxides such as Formic acid. Etc.)
Color	Color change to brown

oleic acid(C18:1)

linoleic acid(C18:2)

Microbial problems of Biodiesel

- ➤ BD blends are more susceptible to biological attack by micoorganisms due to its water affinity.
- ➤ Refer to ASTM D6469-12(Standard Guide for Microbial Contamination in Fuels and Fuel

Systems)

_	Content
Major microorganismes	Bacteria and Fungi
The places of formation	Overhead surface in fuel tank, Tank wall, Fuel/Water Interface, Pipe, Filter
Products	Sludge, Biosurfactants, Sulfide(SBR, sulfate reducing bacteria), Organic acids
Symptoms	Filter plugging, Engine deposit, Emulsification, Metal corrosion, Deplasticize of coating on fuel tank, Additive degradation
Diagonostic methods	Acid/base number, Water content, Density/Viscosity, Copper corrosion, Pour Point
Remedial efforts	Monitoring and removal of water and contaminants, Minimize contaminants entry, Biocide use, Tank cleaning

The Compositional Profiles of BD from Various Feedstocks

- The animal fat BD has highly saturated C16:0 FA and highly unsaturated C18:1, 2 FA
 Relatively Poorer cold property and oxidation stability
- The coconut and PKO BD have over 60% of highly saturated C12:0 and C14:0 FA
 - Relatively good oxidation stability and cold flow property by short carbon chain
- The soybean and waste oil have bad oxidation stability due to the high C18:1, 2 FA
- The palm BD has bad cold property due to the highly saturated C16:0 FA

Τ.	Anima	l fat BD	Vegetable oil BD						
Items	Lard	Tallow	Coconut	Palm Kernel	Soybean	Waste oil	Palm		
C8:0			6	3					
C10:0			5	4			Table Jack		
C12:0			44	<u>52</u>					
C14:0	2	3	17	16			1		
C14:1		1							
C15:0									
C16:0	<i>23</i>	<u>25</u>	9	7	10	16	<u>48</u>		
C16:1	3	4				1			
C17:0	0.5	0.5							
C17:1									
C18:0	11	11	3	1	5	4	5		
C18:1n9c	<u>44</u>	<u>43</u>	7	11	22	33	37		
C18:2n6c	11	8	2	2	<u>51</u>	<u>37</u>	9		
C18:2n6t									
C18:3n3	1	1	1	1	7	5	1		
C20:1n9c	1								
C20:4n6									
C20:5n3						. 23			
Others	2	2	3	1	3	3	0.3		
Total	98.5	98.0	96.7	97.6	97.5	98.5	Å då		
Olefin conte n t	6 0	57	h 10	14	80	76			
CFPP(°C)	8.0	70 1	=8.0	-9.0	 5.0	0.0			
Oxidation stability(hr)	1.57	1.57	33.47	11.61	2.2	12	110.5		

1 24/33

The Quality of Biodiesel of Various Feedstocks

- The animal fat BD shows relatively the worst qualities.
- The coconut and PKO BD show the low flash point, viscosity and density due to the short chain components(below C14 FA) and the much higher free glycerol content exceptionally due to its overlapping with C10:0 FAME peak in existing method.

		Animal fat BD		Vegetable oil BD					
Items	Spec.	Lard	Tallow	Coconut	Palm kernel	Soy bean	Waist oil	Palm	
Methyl ester content (wt%)	96.5	98.5	98.0	96.7	97.6	98.5	99.2	99.7	
Flash point (℃)	120↑	178	180	142	148	179	178	178	
Viscosity (40°C, mm ² /s)	1.9-5.0	4.472	4.455	2.56	2.80	4.02	4.20	4.44	
Carbon residue (wt%)	0.1↓	0.01	0.02	0.09	0.02	0.03	0.03	0.03	
Sulfur content (mg/kg)	10↓	1.03	1.04	0.90	0.00	1.03	1.64	0.15	
Ash (wt%)	0.01↓	0.001↓	0.001↓	0.001↓	0.001↓	0.001↓	0.001↓	0.001↓	
Copper corrosion (50℃, 3h)	1↓	1a	1a	1a	1a	1a	1a	1a	
CFPP (℃)	0↓	8.0	7.0	-8.0	-9.0	-6.0	0.0	10.0	
PP (℃)	_	9.0	9.0	-6.0	-7.0	-5.0	1.0	14.0	
Density (15℃, kg/m³)	860-900	876.0	875.0	864.0	860.5	884.0	881.0	874.0	
Water content (wt%)	0.05↓	0.0151	0.0264	0.0199	0.0600	0.0074	0.0402	0.0130	
Total contamination (mg/kg)	24↓	5.3	4.7	7.8	5.4	6.2	6.5	8.8	
Acid value (mg KOH/g)	0.50↓	0.13	0.04	0.03	0.02	0.01	0.08	0.03	
Total glycerol content (wt%)	0.24↓	0.038	0.032	3.389	2.613	0.047	0.033	0.047	
Monoglyceride content (wt%)	0.80↓	0.006	0.000	0.012	0.000	0.032	0.023	0.013	
Diglyceride content (wt%)	0.20↓	0.000	0.000	0.002	0.000	0.006	0.000	0.006	
Triglyceride content (wt%)	0.20↓	0.000	0.000	0.000	0.000	0.009	0.000	0.008	
Free glycerol content (wt%)	0.02↓	0.032	0.032	3.375	2.613	0.000	0.009	0.019	
Oxidation stability (110°C, h)	6↑	1.57	1.75	33.47	11.61	2.24	13.10	10.50	
Methanol content (wt%)	0.2↓	0.000	0.000	0.004	0.000	0.000	0.000	0.009	
Alkali metals (mg/kg) $\frac{(Na + K)}{(C_{+} + M_{+})}$	5↓	0.1 ↓	0.1 ↓	0.1 ↓	0.1 ↓	0.1 ↓	91	0.1	
	5↓	0.1 ↓	0.1 ↓	0.1 ↓	0.1 ↓	0.1 ↓	101	0.1 ↓	
Phosphorous content (mg/kg)	$10 \downarrow -$	0.1	0.1	0.1 ↓	0.1	0.1 \			

25/33

The Introductory Background and Issues of the Animal fat Biodiesel

- > In 2009, The Working Group was held to introduce the animal fat BD
 - It need for diversifying the domestic BD feedstock but BD content test method should be reviewed
 - ** The animal fat BD has C17 FAME unlike vegetable BD which has been using an ISTD material of existing method (EN 14013), Therefore it was not applicable to animal fat BD
- ➤ In 2010, the revised version of EN 14103 method was reviewed and then the following year the animal fat BD was commercialized.

5

Comparing the Condition of the FAME Test Methods

- ➤ The main differences are the FAME calculation range and ISTD
 - The new version can cover the C6~C24 FA, Therefore it can be applied to the coconut and PKO BD containing mainly below C14 FA
 - The C19:0 FAME is used as ISTD instead of C17:0, Therefore it can also be applied to the animal fat BD including the C17 FAME component.

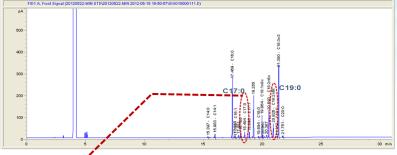
Method	KS M 2413 = EN 14103-2003(Old)	EN 14103 (New version)
Scope	FAME C14 ~ C24 * Not applicable to Coconut, Palm(C12 FAME is most) and Animal fat BD	FAME C6~C24 * Applicable to Coconut, PKO and Animal fat BD
Internal standard	Methyl heptadecanoate (FAME C17)	Methyl nonadecanoate (FAME C19)
Column	Polyethylene glycol stationary phase (30m(L), 0.35mm(I.D), 0.25µm(film	30m(L), <u>0.25mm(I.D)</u> , 0.25μm(film
Temp.	thick) 250°C(25min)	thick) $60^{\circ}C(2\min) \rightarrow 10^{\circ}C/\min \rightarrow 200^{\circ}C \rightarrow 5^{\circ}C/\min$ $n \rightarrow 240^{\circ}C(7\min)$
Flow rate	1~2 mL/min	←
Split rate	50mL/min	100mL/min
Sample (10mL base)	Sample: 250mg STD: Take 5mL of 10mg/mL(Heptan)	Sample: 100mg STD: 100mg Solvent: toluene

The Test Results analyzed by the New Method

- ➤ The animal fat BD content analyzed by the new method was 1.1 ~ 4.1 wt% higher as compared to the old method
- > Coconut and PKO BD was 56 ~ 59 wt% higher as compared to the old method

	Animal fat BD									
Items	Tal	low	Chicken		Lard		Leather Lard		Leather Tallow	
	<u>A</u>	<u>B</u>	А	В	Α	В	А	В	А	В
FAME contents	88.8	90.4	89.5	93.6	96.2	98.5	97.4	98.5	96.3	98.0
Difference (B-A)	1.6 4.1		2.	.3	1.1		1.7			
C17:0 content	0.7 0.3			.3	0.	.4	0.5		0.5	
					Vegeta	ble oil l	BD			
Items	Coc	onut	Palm 1	kernel	Soy bean Waist oil		st oil	Palm		
	А	В	А	В	А	В	А	В	А	В
FAME contents	37.9	96.7	40.7	97.6	97.1	97.5	98.6	99.2	99.9	99.7
Difference (B-A)	58	58.8 56.0		0.4		0.6		0.2		
C17:0 content	()	()	0 0		0			

^{*} A test method is applied by the current method (KS M 2413=EN 14103) B test method is applied by the new method (EN 14103)



The Quality of Microalgae BD Produced in Korea

The national project has been conducted by Marin Bioenergy Research Center (2009–2019)

	Properties		Spec.	Results	
FAN	ΛE(wt%)	Min.	96.5	98.8	
Flash	Point(°C)	Min.	120	170	
Kinematic Vis	scosity (40°C, mm²/s)		1.9 ~ 5.0	3.3	
Carbon R	Residue (wt%)	Max.	0.1	0.01이하	
Sulfur Co	ontent (mg/kg)	Max.	10	4	
Asl	າ (wt%)	Max.	0.01	0.001이하	
	trip Corrosion °C, 3h)	Max.	1	1a	
CF	PP (℃)	Max.	0	6	
Density	(15°C, kg/m³)		860 ~ 900	894	
Moist	ure (wt%)	Max.	0.05	0.05	
Sedime	ent (mg/kg)	Max.	24	7	
TAN (mg KOH/g)	Max.	0.50	0.28	
Total Gl	ycerol (wt%)	Max.	0.24	0.001이하	
Monogly	ceride (wt%)	Max.	0.80	0.001이하	
Diglyce	eride (wt%)	Max.	0.20	0.001이하	
Triglyco	eride (wt%)	Max.	0.20	0.001이하	
Free Gly	cerol (wt%)	Max.	0.02	0.001이하	
Oxidation St	ability (110℃, h)	Min.	6	6	
Metha	anol (wt%)	Max.	0.2	0.01이하	
Alkali Metals	(Na + K)	Max.	5	0.1이하	
(mg/kg)	(Ca + Mg)	Max.	5	5	
Phospho	orus (mg/kg)	Max.	10	4	

- ➤ All of the properties are satisfying the BD spec.
- ➤ But the oxidation stability and some metals(Ca, Mg) content are close to spec. limit

➤ Microalgae BD has overlap peaks with C17 FAME and C19 FAME which are using the internal standards of the current FAME content methods

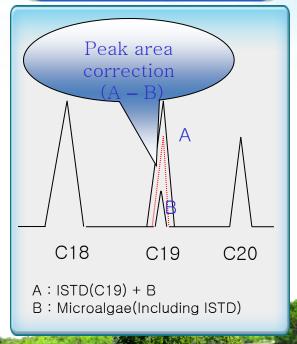
Need to optimize the quality and develop the new method for the microalgae BD

The Relationship of compositional profiles and quality

- Microalgae BD compositional profiles are different as its species and more diverse than other conventional BDs
- The Dunaliellat BD contains the significant level of polyunsaturated constituents (C18:3 FA of 32.4%) which can cause the bad oxidation stability.
- ➤ The Botryococus BD contains high C18:1 FA similar to rapeseed BD profile.
- ➤ The Tetraselmis BD contains high C16:0 FA sImIlar to palm BD profile.

	Microalgae BD			Animal	fat BD		Vegetable oil BD				
Items		Botryococ cus braunii		Lard	Tallow	Coconut	Palm Kernel	Soybean	Waste oil	Palm	
C8:0						6	3				
C10:0						5	4				
C12:0						<u>44</u>	<u>52</u>				
C14:0			0.6	2	3	17	16			1	
C14:1		2.6			1						
C15:0		0.3									
C16:0	19.6	9.5	<i>33.3</i>	23	25	9	7	10	16	<u>48</u>	
C16:1		2.4	1.1	3	4				1		
C17:0	1.8		4.2	0.5	0.5						
C17:1	1.8	0.8	0.9								
C18:0	0.5	1.2	0.6	11	11	3	1	5	4	5	
C18:1n9c	7.5	<u>44.8</u>	16.4	<u>44</u>	<u>43</u>	7	11	22	33	37	
C18:2n6c	9.7	7.5	11.3	11	8	2	2	<u>51</u>	<u>37</u>	9	
C18:2n6t	5.0	0.4	2.4								
C18:3n3	<i>32.4</i>	7.8	7.3	1	1	1	1	7	5	1	
C20:1n9c		0.8	0.6	1							
C20:4n6			0.5								
C20:5n3			0.6								
Others	20.1	12.7	16.3	2	2	3	1	3	3 🐒	0	
Total	98.4	90.8	96.1	98.5	98.0	96.7	97.6	97.5	98.5		
Olefin contenț	56.4	67.1	41.1	60	57	10	14	80	76		
CFPP(℃) 🛕	6	_	_	8.0	7.0	-8.0	-9.0	-5.0	00		
Oxidation stability(hr)	1	_	-	1.57	1.57	33.47	11.61	2.2		10.5	

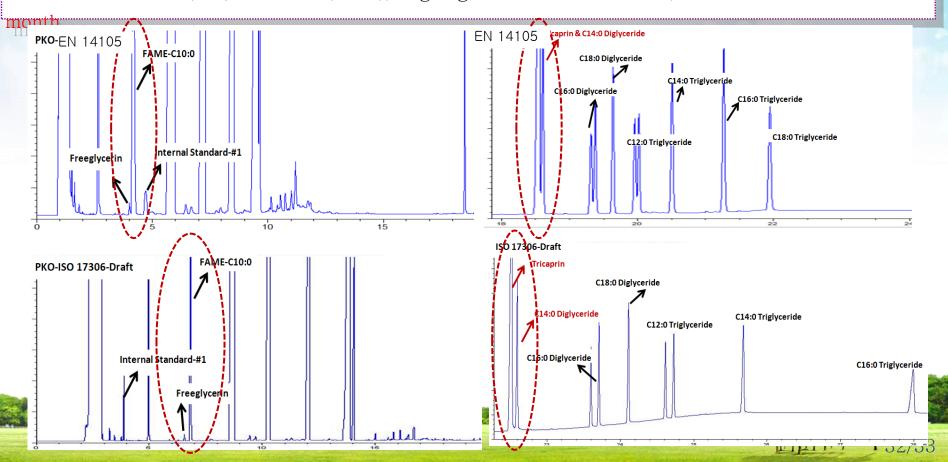
30/33



Development of FAME Content Test Method for Microalgae

- ➤ This method focused on developing an applicable method to any BD regardless of any feedstocks
 - Therefore, we selected double test and area correction method
- ➤ But this method can have a precision problem because of the double test for one sample
 - we are trying to round robin test for domestic labs to check the precision

	EN 14103	Suggested method
Coverage	FAME C6~C24	←
ISTD	Methyl nonadecanoate(FAME C19)	←
	Polyethylene glycol (Carbowax 20m, BD wax, CP wax, etc.)	←
Colum	30m(L), 0.25mm(I.D), 0.25μm(F.Thick)	←
Temp.	60 °C (2min)→10 °C/min→200 °C→5 °C /min→240 °C (7min)	←
Flow rate	1~2 mL/min	←
Split ratio	100mL/min	←
Sampling (10mL)	Sample 1:/ISTD(C19:0)	- Sample 1 : ISTD(C19:0) - Sample 2 : without
Others	1 sample measurement	2 sample measurement


Test method principle

Glycerin Analysis Method of Coconut and PKO BD

- > The current glycerin test method(EN 14105) is not applicable to Coconut and PKO BD
 - The C10 FAME overlapped with free glycerol and Tricaprin (ISTD 2) is overlapped with C14 diglyceride peak because this method has been made for BD containing the C16 and C18 FA
- ➤ We reviewed the new method(ISO/DIS 17306(Draft) suggested in 2013 and verified that all the problems (free glycerol and tricaprin peak overlapping) of the current method have been solved
- This new method(ISO/DIS 17306(Draft)) is going to more review in ISO/TC28 at the end of this

Thank you

