





## Discussion on/Way forward for guidelines toward high biodiesel blend diesel

### Nuwong CHOLLACOOP Renewable Energy Lab National Metal and Materials Technology Center (MTEC) nuwongc@mtec.or.th

The 1<sup>st</sup> APEC Workshop on Guidelines toward High Biodiesel Blend Diesel (eg B20) Specification in the APEC Region

> 13-14 December 2017 CC405, Thailand Science Park Thailandonal Science and Technology Capability

## Outline



- International Review of Biodiesel Standards
- Prior Initiative on Harmonization of International Standards: Technical Standards
- Discussion



# International Review of Biodiesel Standards



## **ASTM standard for biodiesel**

D975: diesel (up to B5) D7467: B6-B20 D6751 biodiesel (B100)

## ASTM



and standard was developed in necendance with internationally recognized principles on standardization established in the Decision on Principles for the most of International Standards, Guides and Recommendations issued by the World Trade Department Technical Partices in Trade (TRT) Committee.



#### Standard Specification for Diesel Fuel Oils1

This standard is issued under the first designation D075: the number immediately following the designation indicates the year of original adoption on in the case of reviews, the year of his tervision. A mather in parenthese indicates the year of his reciproval, A approxing regional of an advises an endowed league sense the hist review no reciproval. This standard has been appressed for use by agonesis of the U.S. Desarbaent of Defore

stant speed and load.

Sultur" analys or LILSD

delivery.

restrictive.

standard.

1.1.7 Grade No. 4.0 4 heavy distillate fuel or a blend of

Note 1-A more detailed description of the grades of diesel fuel oils is

Sofia 1—A more declared description of the grades of deservation X1.2.
Note 2—The Szax designation has been adopted to distinguish grades by suffar rather than using words such as "Low Suffar" as previously.

because the number of suffice grades is growing and the word description were throught to be not precise. \$5000 grades correspond to the so-called "regular" suffice grades, the previous No. 1-D and No. 2-D. \$500 grader correspond to the previous "Low Suffur" grades. \$15 grades were not in

1.2 This specification, unless otherwise provided by agree

ment between the purchaser and the supplier, prescribes the

required properties of diesel fuels at the time and place of

of federal, state, or local regulations which can be more

1.2.1 Nothing in this specification shall preclude observance

1.3 The values stated in SI units are to be regarded as

1.4 This international standard was developed in accor-

1256 Test Method for Flash Point by Tae Closed Cup Tester

D86 Test Method for Distillation of Petroleum Products and

<sup>3</sup> Fey infirmed ASTM sender/s, visit the ASTM website, www.sens.org. or scelase. ASTM Clustemer Previce a service@sens.org. For Annual Newl of ASTM Sumstain volume information, refer to the standard's Datament Sommary page on the ASTM solutio.

standard. No other units of measurement are included in this

problems in the bandling of doublate dash fast oils. For more tion on the subject, see Guide D4865.

Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:<sup>3</sup>

system and are commonly referred to as "Ultra-Low

distillate and residual oil, for use in low- and medium-speed

diesel engines in applications involving predominantly con-

#### 1. Scope<sup>4</sup>

1.1 This specification covers seven grades of diesel fuel oils suitable for various types of diesel engines. These grades are described as follows:

1.1.1 Grade No. 1-D SI5-A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 15 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S15 fuel.<sup>2</sup>

1.1.2 Grade No. 1-D 8500-A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 500 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S500 fuel.2

1.1.3 Grade No. 1-D S5000-A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 5000 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D 85000 fuels.

1.1.4 Grade No. 2-D S15-A general purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 15 ppm sulfur triaximum). It is especially suitable for use in applications with conditions of varying speed and load.2 1.1.5 Grade No. 2-D 8500-A general-purpose, middle

distillate fuel for use in diesel engine applications requiring a fuel with 500 ppm sulfur (maximum). It is especially suitable for use in applications with conditions of varying speed and

1.1.6 Grade No. 2-D S5000-A general-purpose, middle 1.4 Inis International standard was developed in accordance with Internationally recognized principles on standard-ization established in the Decision on Principles for the Development of International Standards, Gaides and Recom-mendations issued by the World Trade Organization Technical distillate fuel for use in diesel engine applications requiring a fuel with 5000 ppm sulfur (maximum), especially in conditions of varying speed and load,

<sup>1</sup> This specification is under the justisfiction of ASTM Committee D02 on Petroleum Peulacis, Liquid Linds, and Lubricanis and is the direct responsibility of Subcementate D02,153 on Barrier, Diricel. Non-Aviation Gas Tarhine, and Marine en appreved May 1, 2017. Published May 2017. Originally

approved in 1948. Last previous edition approved in 2016 as D975-16a. DOI 10.1520/D0975-17 

#### \*A Summary of Changes section appears at the end of this standard

Copyright 9 ASI M International, 100 Bart Harbor Unive, PO Box 0700, West Constructeden, PA 19428-2959, United States Converient by ASTM Infl (all rights reserved): Sat Nov 18 23:33:50 EST 2017

tional standard use developed in neveralonce with internationally recognized principles on standardization established in the Decision on Principles for the moment of International Standards, Guides and Recommendations issued by the World Dade Decasization Technical Barriers to Trade (TBT). Committee,

#### Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20)1

This standard is issued under the fixed designation D7467; the number immediately following the designation indicates the year of original adoption on in the case of reviews, the year of host revision. A number in parenthesis indicates the year of host recupport. A approxing opsision (or an artists as a colonal charge seare the host revision on response).

standard.

2. Referenced Documents

2.1 ASTM Standonts<sup>2</sup>

Closed Cup Tester

Permileum Products

Method)

and Liquid Enels

and Distillate Fuels

by Potentiometric Titration

19975 Specification for Diesel Fuel Oils

1.3 The values stated in SI units are to be regarded as

1556 Test Method for Hash Point by Tag Closed Cup Tester

1386 Test Method for Distillation of Petroleum Products and

1993 Test Methods for Flash Point by Pensky-Martens

D129 Test Method for Sulfur in Petroleum Products (Gen-

eral High Pressure Decomposition Device Method) D130 Test Method for Corrosiveness to Copper from Petro-

leum Products by Copper Strip Test. D445 Test Method for Kinematic Viscosity of Transparent

12482 Test Method for Ash from Petroleum Products

and Opaque Liquids (and Calculation of Dynamic Viscos-

D524 Test Method for Ramsbottom Carbon Residue of

D613 Test Method for Cetane Number of Diesel Fuel Oil

D664 Test Method for Acid Number of Petroleum Products

10976 Test Method for Calculated Cetane Index of Distillate

Fuels D1266 Test Method for Sulfur in Petroleum Products (Lamp

D1319 Test Method for Hydrocarbon Types in Liquid Petro-

D1552 Test Method, for Sulfur in Petroleum Products by

D2500 Test Method for Cloud Point of Petroleum Products

D2622 Test Method for Sulfur in Petroleum Products by

Wavelength Dispersive X-ray Fluorescence Spectrometry D2624 Test Methods for Electrical Conductivity of Aviation

<sup>2</sup> Twe informed ASTM standards, visit the ASTM website, www.aem.org. or center, ASTM Unitome Service at service@sem.org. Far Annual Rook of ASTM Standards volume information, refer to the atandard's Document Summary page on the ASTM website.

High Temperature Combustion and Infrared (IR) Detec-

leum Products by Fluorescent Indicator Adsorption

tion or Thermal Conductivity Detection (TCD).

Liquid Fuels at Atmospheric Pressure

standard. No other units of measurement are included in this

#### 1. Scope\*

1.1 This specification covers fuel blend grades of 6 volume percent to 20 volume percent (%) biodiesel with the remainder being a light middle or middle distillate diesel fuel, collectively designated as B6 to B20. These grades are suitable for various types of diesel engines.

Designation: D7467 - 17

1.1.1 The biodiesel component of the blend shall conform to the requirements of Specification D6751. The remainder of the fuel shall be a light middle or middle distillate grade diesel fuel conforming to Specification 19975 grades No. 1-D and No. 2-D of any sulfur level specified with the following exceptions. The light middle or middle distillate grade diesel ruel whose sulfur level, aromatic level, cetane, or lubricity falls outside of Specification 19975 may be blended with biodiesel meeting Specification D6751, provided the finished mixtures meets this specification.

1.1.2 The fuel sulfur grades are described as follows:

1.1.2.1 Grade B6 to B20 S15-A fuel with a maximum of 15 ppm sulfur 1.1.2.2 Grade B6 to B20 \$500-A fuel with a maximum of

500 ppm sulfur.

1.1.2.3 Grade B6 to B20 \$5000-A fuel with a maximum of 5000 ppm sulfur.

1.2 This specification prescribes the required properties of B6 to B20 blodtesel blends at the time and place of delivery. The specification requirements may be applied at other points in the production and distribution system when provided by agreement between the purchaser and the supplier.

1.2.1 Nothing in this specification shall preclude observance of federal, state, or local regulations that may be more restrictive.

No.s 1—The generation and dissipution of static electricity can create problems in the handling of distillate diesel fuel of a. For more informa-tica on this sobject, see Guide D4865.

<sup>1</sup>Thir specification is under the joital/rikes of ASTM Committee D02 on Penderun Postster, Lajoit Frieds, and Labezones and in the start respectivity of Subscinantice DO2 D03 Busized Tables, Mono-Normica GB Thirdae, and Manae Table. Current relation approved Am. 1, 2017. Published March 2017. Originally appeared in 2008. Lase previous edition approved in 2018 as D2467. USC: DO08. 1032007/s0-11.

\*A Summary of Changes section appears at the end of this standard

Copyright @ ASI M International 100 Bart Harbor Univer PO Box 0700, West Constructionen PM 19428-2959, United States rida by ASTM Jaff (all ridats reserved): Sat New 18 23/25:12 EST 2017

ternational standard use developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Childes and Recommendations issued by the World Trade Organization Technical Raterices to Trade (TRT) Committee.



Fuels<sup>1</sup>

#### Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate

This vandumi is issued under the fixed designation (Dr751); the remoter immediately following the designation indicates the year of ongoind adoption c; in the case of network, the year of lost remistion. A number in partnetwork is distants the year of lost respirator). A superscript speaker (c) indicates an oblical abrungs is not be han remistion or remproved.

1. Scope 1.1 This specification covers four grades of biodiesel (B103) for use as a blend component with middle distillate fuels. These grades are described as follows:

1.1.1 Grade No. 1-B S15-A special purpose biodiesel blendstock intended for use in middle distillate fuel applications which can be sensitive to the presence of partially reacted glycerides, including those applications requiring good law temperature operability, and also requiring a fuel blend com-

ponent with 15 ppm sulfur (maximum). 1.1.2 Grade No. 1-B \$500-A special purpose biodiesel blendstock intended for use in middle distillate fuel applications which can be sensitive to the presence of partially reacted glycerides, including those applications requiring good low temperature operability, and also requiring a fuel blend component with 500 ppm sulfur (maximum).

1.1.3 Grade No. 2-B \$15 A general purpose biodiesel blendstock intended for use in middle distillate fuel applications that require a fuel blend component with 15 ppm sulfur (maximum)

1.1.4 Grade No. 2-B \$500-A ceneral nurnose biodiese blendstock intended for use in middle distillate fuel applications that require a fuel blend component with 500 ppm sulfur (maximum).

1.2 This specification prescribes the required properties of diesel fuels at the time and place of delivery. The specification requirements may be applied at other points in the production and distribution system when provided by agreement between the purchaser and the supplier.

1.3 Nothing in this specification shall preclude observance of federal, state, or local regulations which may be more restrictive.

This specification is under the jorialiction of ASTM Committee D02 on Poiroleon Producta, Liquid Furta, and Lubracanta and is the direct responsibility or Subcommittee D02 E0 on Burner, Directl, Non-Aviation Gas Turbure, and Manae

ETGL Current edition approved Dec. 1, 2013. Published January 2016. Originally approval in 1995 as 15 121 - 99, Adopted as a standard in 2002 at 15571 - 102, Last previous edition approved in 2015 as. D6781 - 155, D608: 10.15597B6781 1251001.

#### \*A Summary of Changes section appears at the end of this standard

Copyright 9 AS Millionational, 100 Bart Harbor, Jine, PO Box 0700, West Construction PA 19428-2959, Unlike States Converient by ASTM Infl. (all rights reserved): Sat Nov 18 23:29:26 EST 2017

D975: diesel (up to B5) D7467: B6-B20

D6751: B100

standard. No other units of measurement are included in this standard 2. Referenced Documents 2.1 ASTM Standards<sup>2</sup> 1993 Test Methods for Flash Point by Pensky-Martens

Closed Cup Tester D130 Test Method for Corrosiveness to Copper from Petro-

Nrms 1—The generation and disorption of static electricity can create problems in the bandling of distillate fuel oils with which biodiesel may be blended. For mose information on the subject, see Guide D4865.

1.4 The values stated in SI units are to be regarded as

leum Products by Copper Strip Test D189 Test Method for Conradson Carbon Residue of Petro-

learn Products D445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscos-

D524 Test Method for Ramsbottom Carbon Residue of Petroleum Products

D613 Test Method for Cetane Number of Diesel Fuel Oil D664 Test Method for Acid Number of Petroleum Products by Potentiometric Titration

D874 Test Method for Sulfated Ash from Lubricating Oils and Additives

19974 Test Method for Acid and Base Number by Color-Indicator Titration

D975 Specification for Diesel Fuel Oils D976 Test Method for Calculated Cetane Index of Distillate

Fuels D1160 Test Method for Distillation of Petroleum Products at

Reduced Pressure D1266 Test Method for Sulfur in Petroleum Products (Lsmp Method)

D1796 Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure)

<sup>2</sup> Fee informed ANTM standards, visit the ANTM website, www.sem.org. or onder, ANTM Gustemer Parvice at service@tatim.org. For Annual Book of ANTM kandards volume information, refer to the standard's Deciment Summary page on in ANTM velocitie.

5



## **EN standard for biodiesel**

EN590: diesel (up to B7) EN16734: B10 EN16709: B20/B30 EN14214: biodiesel (B100)

## EN



| EUROPEAN STANDARD<br>NORME EUROPÉENNE<br>EUROPÄISCHE NORM                                                                                                                                                                                                                                                                                                                | EN 590<br>September 2013                                                                                                                   | EUROPEAN STANDARD<br>NORME EUROPÉENNE<br>EUROPÄISCHE NORM                                                                                                                                                                                                                                                    | EN 16734                                                                                                                                                                                                             | EUROPEAN STANDARD<br>NORME EUROPÉENNE<br>EUROPÄISCHE NORM                                                                                                                                                                                                                                                    | BS EN 16709:2015<br>EN 16709<br>October 2015                                                                                                                                                                          | EUROPEAN STANDARD<br>NORME EUROPÉENNE<br>EUROPÄISCHE NORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EN 14214:2012+A1                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ICS 75 160.20                                                                                                                                                                                                                                                                                                                                                            | Incorporating corrigendum March 2014                                                                                                       | ICS 75.160.20                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      | 105 75.160.20                                                                                                                                                                                                                                                                                                | Incorporating corrigendum June 2016                                                                                                                                                                                   | ICS 75 160.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Incorporating corrigendum October 2014                                                                                                 |
| Endish Varsian                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                            | Engl                                                                                                                                                                                                                                                                                                         | ish Version                                                                                                                                                                                                          | Eng                                                                                                                                                                                                                                                                                                          | dish Version                                                                                                                                                                                                          | Engl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ish Version                                                                                                                            |
| Automotive fuels - Diesel - Requirements and test methods                                                                                                                                                                                                                                                                                                                |                                                                                                                                            | Automotive fuels - Automotive B10 diesel fuel -<br>Requirements and test methods                                                                                                                                                                                                                             |                                                                                                                                                                                                                      | Automotive fuels - High F<br>Requirement                                                                                                                                                                                                                                                                     | AME diesel fuel (B20 and B30) -<br>s and test methods                                                                                                                                                                 | Liquid petroleum products - Fatty acid methyl esters (FAME) for<br>use in diesel engines and heating applications - Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |
| Carburants pour automobiles - Carburants pour moteur<br>desel (gazole) - Exigences et méthodes d'essel<br>This Europeen Standard ves approved by CEN on 26 July 2013                                                                                                                                                                                                     | Knatholeffe for Knatholerange - Desellendistoff -<br>Antorderungen und Prüfverfahren                                                       | Carburants pour automobiles - Carburant B10 pour<br>motour automobile ditesel - Exigences et méthodes<br>difessai                                                                                                                                                                                            | Kraftstoffe für Kraftfahrseuge - B10 Dieselkraftstoff-<br>Anforderungen und Prüfverfahren                                                                                                                            | Carburants pour automobiles - Carburant diesel à<br>haute zeneur en EMAG (B20 et B30) - Exigences et<br>méthodes d'essai                                                                                                                                                                                     | Krafustoffe für Kraftfahrzeugo -<br>Diesolaratstoffmischangen mit kohen FAME-Anteil<br>(B20 und B30) - Anfordorungen and Fridbeerhäven                                                                                | and te<br>Produits petrolers liquides - Esters methyliques d'acides<br>gres (EMAG) our increars desei et comme combuttité de<br>hourisme - Biourisme et methodes d'essai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St methods                                                                                                                             |
| CEN members are bound to comply with the CEN/CENELEC In                                                                                                                                                                                                                                                                                                                  | demail Regulations which stipulate the conditions for giving this European                                                                 | This European Standard was approved by CEN on 8 july 2016.                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      | This European Standard was approved by CEN on 29 Augus                                                                                                                                                                                                                                                       | t 2015.                                                                                                                                                                                                               | change chierce chierce can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |
| Standard the status of a national standard without any alteration<br>standards may be obtained on application to the CEN-CENELE                                                                                                                                                                                                                                          | <ol> <li>Up-to-date lists and bibliographical references concerning such national<br/>C Management Centre or to any CEN member.</li> </ol> | CEX members are board to comply with the CEN/CENELEC)                                                                                                                                                                                                                                                        | nternal Regulations which stipulate the conditions for giving this                                                                                                                                                   | CEN members are board to comply with the CEN/CENELEO                                                                                                                                                                                                                                                         | Internal Regulations which stipulate the conditions for giving this                                                                                                                                                   | This European Standard was approved by CEN on 20 July 2012 and includes Amendment 1 approved by CEN on 10 November 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |
| This European Standard exists in three official versions [English: French, German]. A version in any other language made by translation<br>under the responsibility of a COI member into its own language and notified to the CEN-CENELEC Management Centre has the some<br>driven are the official versions.                                                            |                                                                                                                                            | Sumpeen Standard the status of a national standard without any alteration. Up to date lists and likilographical references<br>concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN<br>member.                                                |                                                                                                                                                                                                                      | European Standard the status of a national standard without any alteration. Up to date lies and bibliographical references<br>concerning such national standards may be obtained on application to the CEN-CENELEC Management Contre or to any CEN<br>member.                                                |                                                                                                                                                                                                                       | CEN members are bound to comply with the CENCENELEC internal Regulations which stoulate the conditions for giving this European<br>Standard the status of a national statud without any afferition. Up-to-date lists and bibliographical inferences concerning such half and<br>standards much additional organization to accell-center List (Minagement Canter or to my CEN member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |
| CEI: menors werten wilden i dereden bederer dr. Jures & Beglann, Rigues A. Castala, Capasa Caroh Repatala, Edwin<br>Franka Fenner Yungen Repatala Cardacasara Pronce Stermany Reserve, Jampa Matala Lander (hys. Land, Kaunana,<br>Lumericoug, Mata, Netherland, Norwy, Point, Petagal, Romana, Sowaia, Slevevia, Spain, Sweden, Switzeland, Turky and Unied<br>Repatan. |                                                                                                                                            | This European Standard exists in three oblicial versions (English, French, Gorman). A version in any other language made by<br>translation under the responsibility of a CBM nomber (not not own language and notified to the CEN-CENELEC Management<br>Centre has the same states as the official versions. |                                                                                                                                                                                                                      | This European Standard exists in three efficial versions (English, French, German). A version in any other language made by<br>translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management<br>Contro has the same status as the official versions. |                                                                                                                                                                                                                       | This European Standard exists in three official versions (English,<br>under the responsibility of a CEN member into its own language a<br>status as the official versions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | French, German). A version in any other lenguage made by translation<br>in a office to the CEN-CENELEC. Menagement Centre has the same |
|                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            | CEN members are the national standards bodies of Austria, B<br>Finland, Former Yugoslav Republic of Maredonia, France, Ge<br>Luxombourg, Malta, Netherlands, Norway, Poland, Portugal,<br>United Riendon.                                                                                                    | reigium, Bulgaria, Grazitia, Cyprus, Gzech Ropublic, Donmaria, Estonia,<br>many, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,<br>Romania, Slovaiaa, Slovenia, Spain, Sweden, Switzerland, Parkey and | CEN members are the national standards bodies of Austrie,<br>Finland, Former Yagoslav Republic of Macedonia, France, G<br>Luxonbourg, Malta, Netherlands, Norway, Poland, Portugal<br>United Kinedon.                                                                                                        | Beigium, Bulgarin, Grontin, Cyprus, Czech Ropablic, Denmaric, Estenia,<br>ermany, Greece, Hongary, Iceland, Ireland, Italy, Latvia, Lithuania,<br>Romania, Slovalaa, Slovenia, Spain, Sweden, Switzerland, Turkey and | 1. CEN members are the national standards bodies of Avaits, Bergian, Bigata Coedia, Cystus, Cercit Republic, Denrarka, Ekovia, Finland Former Vagolin Penultis of Materialis France, Granny Greens, Hongyar, Isorak et levend 11, Levia, Ilhuania, Luzenchoug, Matta Netherlands, Norway, Poland, Portugal, Romeins, Stovesia, Stovesia, Stovesia, Stovesia, Stavesia, Stavesia, Stavesia, Stavesia, Stovesia, Stovesia, Stovesia, Stovesia, Stovesia, Stavesia, Stav |                                                                                                                                        |

SUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION SUROPAINCHES KOMITEE L'ÛR NORMUNG

Management Centre: Avenue Mamtx 17. B-1000 Brussels

2013 CEN All rights of exploitation in any form and by any means reserved condivide for CEN national Members.

Hot. No. EN 000/2013: E 40 2016 CEN All rights of exploitation in any form and by any means workbyide for CEN partenal Members.

FOR STANDARDIZATE CONITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, II-1000 Brussels



CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Rot. No. IN 16734:2016 E & 2015 CEN All rights of exploitation in any form and by any means reserved workthyide for CEN national Members.

Ref. No. EN 16709:2015 E

© 2014 CEN All sights of exploitation in any form and by any means reserved worldwide for CEN national Members.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION PURDEAISCHES KOMITHE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

```
Ref. No. EN 14214-2012+A1:2014 E
```

EN590: diesel (up to B7)

### EN16734: B10

### EN16709: B20/B30

EN14214: B100 A Driving Force for National Science and Technology Capability 7

## EN specification for Bxx



| No | property                                                                                             | Unit                   | Limits                        | Diesel          | <b>B10</b>        | <b>B20</b>        | <b>B30</b>        | <b>B100</b>    | Test method                                                         |
|----|------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|-----------------|-------------------|-------------------|-------------------|----------------|---------------------------------------------------------------------|
| 1  | Cetane number                                                                                        | -                      | minimum                       | 51.0            | 51.0              | 51.0              | 51.0              | 51.0           | EN ISO 5165 (B100 only)<br>EN 15195/EN 16144<br>EN 16715 (B10 also) |
| 2  | Cetane index                                                                                         | -                      | minimum                       | 46              | 46                | -                 | -                 | -              | EN ISO 4264                                                         |
| 3  | Density at 15 °C                                                                                     | kg/m³                  | minimum<br>maximum            | 820.0<br>845.0  | 820.0<br>845.0    | 820.0<br>860.0    | 825.0<br>865.0    | 860<br>900     | EN ISO 3675<br>EN ISO 12185                                         |
| 4  | Polycyclic aromatic<br>hydrocarbons                                                                  | %(m/m)                 | maximum                       | 8.0             | 8.0               | 8.0               | 8.0               | -              | EN 12916                                                            |
| 5  | Sulfur content                                                                                       | mg/kg                  | minimum<br>maximum            | -<br>10.0       | -<br>10.0         | -<br>10.0         | -<br>10.0         | -<br>10.0      | EN ISO 20846<br>EN ISO 20884<br>EN ISO 13032                        |
| 6  | Manganese content                                                                                    | mg/l                   | maximum                       | 2.0             | 2.0               | 2.0               | 2.0               | -              | EN 16576                                                            |
| 7  | Flash point                                                                                          | °C                     | minimum                       | 55.0            | 55.0              | 55.0              | 55.0              | 101            | EN ISO 2719                                                         |
| 8  | Carbon residue<br>(on 10 % distillation residue)                                                     | %(m/m)                 | maximum                       | 0.30            | 0.30              | -                 | -                 | -              | EN ISO 10370                                                        |
| 9  | Ash content                                                                                          | %(m/m)                 | maximum                       | 0.010           | 0.010             | 0.010             | 0.010             | -              | EN ISO 6245                                                         |
| 10 | Water content                                                                                        | mg/kg                  | maximum                       | 200             | 200               | 260               | 290               | 500            | EN ISO 12937                                                        |
| 11 | Total contamination                                                                                  | mg/kg                  | maximum                       | 24              | 24                | 24                | 24                | 24             | EN 12662                                                            |
| 12 | Copper strip corrosion (3 h at 50 $^{\circ}$ C)                                                      | rating                 | minimum                       | Class 1         | Class 1           | -                 | -                 | Class 1        | EN ISO 2160                                                         |
| 13 | Fatty acid methyl ester<br>(FAME) content                                                            | %(V/V)                 | minimum<br>maximum            | -<br>7.0        | -<br>10.0         | 14.0<br>20.0      | 24.0<br>30.0      | 96.5<br>%(m/m) | EN 14078<br>EN 14103 (B100)                                         |
| 14 | Oxidation stability                                                                                  | g/m3<br>h              | maximum<br>minimum            | 25<br>20        | 25<br>20          | -<br>20,0         | -<br>20,0         | 8,0            | EN ISO 12205<br>EN 15751                                            |
| 15 | Lubricity, corrected wear scar diameter (wsd 1,4) at 60 $^\circ$ C                                   | μm                     | maximum                       | 460             | 460               | -                 | -                 | -              | EN ISO 12156 -1                                                     |
| 16 | Viscosity at 40 ° C                                                                                  | mm2/s                  | minimum<br>maximum            | 2.000<br>4.500  | 2.000<br>4.500    | 2.000<br>4.620    | 2.000<br>4.650    | 3.50<br>5.00   | EN ISO 3104                                                         |
| 17 | Distillation<br>%(V/V) recovered at 250 °C<br>% (V/V) recovered at 350 °C<br>95 % (V/V) recovered at | %(V/V)<br>%(V/V)<br>°C | maximum<br>minimum<br>maximum | 65<br>85<br>360 | 65<br>85<br>360.0 | 65<br>85<br>360.0 | 65<br>85<br>360.0 | -              | EN ISO 3405<br>EN ISO 3924                                          |

8



## Prior Initiative on Harmonization of International Standards: Technical Standards

# **Outline**



- Current initiatives on harmonization
  - EN → already successful
  - APEC (Asia Pacific Economic Cooperation)
  - TriPartite (Brazil, EU, US)
  - WWFC (Worldwide Fuel Charter)
  - EAS (East Asian Summit)
  - AAF (Asean Automotive Federation)
- Lesson learned and common ground
  - Difficult to enforce mandatory specification like EU
  - Even mutual agreement on voluntary basis still difficult
    - ✓ Oxidation stability
    - ✓ Blend limit
  - Could be used as
    - Bargaining power from the region
    - ✓ Non-tariff barrier

Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region

> EWG 02/2007A APEC 21st Century Renewable Energy Development Initiative (Collaborative IX) November 2007





Final Report Presented to:

Submitted by:

Asia Pacific Economic Cooperation Energy Working Group

Hart Energy Consulting



Asia-Pacific Economic Cooperation





Under APEC 21<sup>st</sup> Century Renewable Energy Development Initiative (Collaborative IX),

 Energy Working Group formulate Expert Group on New and Renewable Energy Technologies (EGNRET) under EWG 02/2007A to establish guideline for common BDF standard

EWG 02/2007A, Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region (2007),

http://www.biofuels.apec.org/pdfs/ewg\_b iodiesel\_standards.pdf

A Driving Force for National Science and Technology Capability 11

## **APEC Harmonization** Approach

a member of NS

- Requiring diesel blends that contain biodiesel to comply with:
  - Applicable diesel specification This raises further issue as to what extent are APEC or national or global diesel specs aligned. There is a convergence occurring, if with some lag, due to globalization;
  - Applicable biodiesel specifications, possibly with certain waivers provided to enable use of varying biodiesels, at varying treat rates; and
  - A new biodiesel blend standard This is as suggested for B10 in Europe and B20 in the U.S., although it includes the caveat that the biodiesel must comply with the EN 14214 and ASTM D6751 standards respectively. The informal B30 standard in France requires EN 14214 compliant biodiesel to be blended.
- Establishing a B100 standard that can:
  - Ensure successful use in the market as B100. This is the European approach using EN 14214. This is vehicle dependent, and blends higher than B5 or B20 are usually not available to the public and are predominantly supplied to captive fleets and niche markets;
  - Ensure a satisfactory product when blended with on specification mineral diesel. The blend rate limits would be set, i.e. B2, B5 as is the current European case; B10 and B20, the current U.S case; and
  - Provide a biodiesel blend component that meets an agreed quality standard and has known characteristics, so that it can be blended with other biodiesel components, and/or additives and/or a blendstock diesel resulting in a finished fuel blend that complies with the applicable diesel specifications. This represents the Brazilian approach, which requires optimization of the blend, including blend rates of the biodiesel (and other components), and certifying/testing of the resultant blend.

EWG 02/2007A, Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region (2007), http://www.biofuels.apec.org/pdfs/ewg\_biodiesel\_standards.pdf

|                                                          | ASTM<br>D6751 | EN 14214   | Typical APEC<br>Economy                                         | Discussion & Conclusions                                                                                                                           | ATE               |
|----------------------------------------------------------|---------------|------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Regulatory and Em                                        | issions       |            |                                                                 |                                                                                                                                                    | member of NSTDA   |
| Max Sulfur (ppm)                                         | 15 /<br>500   | 10         | 10 - 500                                                        | Regulatory requirement per<br>economy<br>Buyer-seller specified                                                                                    |                   |
| Min Flash Point<br>( <sup>°</sup> C)                     | 130 /<br>931  | 120        | 93 - 130                                                        | For non-hazardous classification<br>in U.S. min of 93 <sup>o</sup> C is required.<br>To show methanol controlled<br>certify at >130 <sup>o</sup> C |                   |
| Max T90 Distillation<br>( <sup>°</sup> C)                | 360           | -          | The Philippines,<br>Australia Indonesia<br>@ 360 <sup>°</sup> C | Other (performance) tests control<br>contaminants<br>Biodiesel reduces PM and HC<br>emissions so test not required for<br>emissions reasons        |                   |
| Engine and Aftertre                                      | atment Pe     | erformance | 1                                                               |                                                                                                                                                    |                   |
| Cetane Number                                            | 47            | 51         | 47 - 51                                                         | Higher than 47 (EN) is required<br>for emissions. This is based on<br>diesel tests, so not necessarily<br>applicable to biodiesel.                 |                   |
|                                                          |               |            |                                                                 | Higher minimum ambient<br>temperatures reduce start-up<br>emissions.                                                                               |                   |
|                                                          |               |            |                                                                 | Blending not necessarily linear                                                                                                                    |                   |
|                                                          |               |            |                                                                 | Additives can be used                                                                                                                              |                   |
| Min-Max Density<br>@15 <sup>0</sup> C, kg/m <sup>3</sup> | _             | 860 – 900  | 820 - 900                                                       | Agreement                                                                                                                                          |                   |
| Min-Max Viscosity<br>@ 40 <sup>o</sup> C, cSt            | 1.9 –<br>6.0  | 3.5 – 5.0  | 1.9 – 3.5 min<br>4.5 – 6.0 max                                  | Coconut below 3.5, and tallow<br>and palm can exceed 5<br>Requirement should be for the<br>final blend                                             | nd Technology Cap |

#### ....

hnology Capability 13

|                                    | ASTM<br>D6751 | EN 14214   | Typical APEC<br>Economy                                         | Discussion & Conclusions                                               |  |
|------------------------------------|---------------|------------|-----------------------------------------------------------------|------------------------------------------------------------------------|--|
| Max phosphorus<br>ppm              | 10            | 10         | 10<br>China no spec                                             | Agreed                                                                 |  |
| Max Alkali metals<br>(Na + K), ppm | 5             | 5          | No spec, report, 5                                              | Depends on after-treatment                                             |  |
| Max Ca + Mg, ppm                   | 5             | 5          | No spec, report or 5                                            | Depends on after treatment                                             |  |
| Max CFPP, <sup>o</sup> C           | _             | +5 to - 44 | No spec<br>Chinese Taipei =0<br>Indonesia = +18                 | Requirement should be for the blend                                    |  |
| Max cloud point <sup>o</sup> C     | Report        | -          | No spec<br>The Philippines =<br>Report                          | Not needed                                                             |  |
| Direct Usability and               | l/or Durab    | ility      |                                                                 |                                                                        |  |
| Max CCR 10%,<br>wt%                | -             | 0.3        | 0.1 – 0.3<br>The Philippines no<br>spec                         | Difficult for biodiesel to<br>fractionate 10 %, so not<br>recommended. |  |
| Max CCR 100%,<br>wt%               | 0.05          | -          | Korea, Chinese<br>Taipei, Thailand,<br>Japan, China =no<br>spec | Recommended to use                                                     |  |
| Max water and<br>sediment , vol%   | 0.05          | -          | Japan, NZ, Chinese<br>Taipei, Thailand,<br>China =no spec       | Agreed to replace by separate testing                                  |  |
| Max water, ppm                     | -             | 500        | Australia, Indonesia,<br>The Philippines,<br>Korea = no spec    | Agreed                                                                 |  |
| Max Ash, wt%                       | 0.02          | 0.02       | 0.01 - 0.02                                                     | Agreed at 0.02<br>May reduce later                                     |  |
| Total<br>Contamination,<br>ppm     | -             | 24         | China, Indonesia,<br>The Philippines,<br>Korea = no spec        | Agreed                                                                 |  |



|                                                         | ASTM<br>D6751 | EN 14214                    | Typical APEC<br>Economy                                                      | Discussion & Conclusions                                                                                  | -                         |
|---------------------------------------------------------|---------------|-----------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|
| Max Cu corrosion,<br>3 hr at 50 <sup>o</sup> C          | 3             | 1                           | 1<br>Indonesia, The<br>Philippines = 3                                       | Needs further work for alignment.<br>In practice biodiesel complies<br>easily                             | a member of NSTDA         |
| Max Methanol<br>content, wt%                            | 0.2           | 0.2                         | China, The<br>Philippines = no spec                                          | Agreed                                                                                                    |                           |
| Max free glycerine,<br>wt%                              | 0.02          | 0.02                        | Korea = no spec                                                              | Agreed                                                                                                    |                           |
| Min oxidation<br>stability @ 110 <sup>o</sup> C,<br>hrs | 3             | 6                           | No spec, 3 or 6<br>Japan = 10                                                | Needs further work                                                                                        |                           |
| Max total glycerin,<br>wt%                              | 0.24          | 0.25                        | 0.24 - 0.25                                                                  | Agreed and 0.24 recommended                                                                               |                           |
| Indirect (Derived) U                                    | sability a    | nd/or Durabili              | ity                                                                          |                                                                                                           |                           |
| Min Ester Content                                       | -             | 96.5                        | China, The<br>Philippines, US = No<br>spec                                   | Method developed for RME, so<br>does not show lower molecular<br>weight from CME                          |                           |
| Max non-ester                                           | -             | None<br>except<br>additives | No spec                                                                      | Agreed to exclude                                                                                         |                           |
| Max acid value                                          | 0.5           | 0.5                         | 0.5 – 0.8                                                                    | Simple test. Agreed to include.<br>Limit not agreed.                                                      |                           |
| Max glycerides –<br>mono, di, tri                       | -             | 0.8; 0.2;<br>0.2            | No spec                                                                      | No agreement.<br>Prefer direct tests of performance                                                       |                           |
| Max linolenic acid<br>methyl ester                      | -             | 12                          | Australia, China,<br>Indonesia, The<br>Philippines, Korea,<br>U.S. = No spec | Limits certain feedstocks with no<br>clear reason.<br>No agreement.<br>Prefer direct tests of performance |                           |
| Max<br>polyunsaturated<br>methyl ester                  | -             | 1                           | No Spec,<br>Chinese Taipei = 1                                               | No agreement.<br>Prefer direct tests of performance                                                       | and Technology Capability |

Capability 15



|                                       | ASTM<br>D6751 | EN 14214 | Typical APEC<br>Economy                                                     | Discussion & Conclusions                                                                                                                   |
|---------------------------------------|---------------|----------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Max iodine number                     | -             | 120      | 115 - 120<br>Australia, China, The<br>Philippines, Korea,<br>U.S. = No spec | Limits certain feedstocks without<br>certain reason. Max limit of 130<br>preferred.<br>No agreement.<br>Prefer direct tests of performance |
| Mandated<br>detergents &<br>additives | -             | -        | -                                                                           | No agreement.<br>Further discussion required                                                                                               |

## Remarks



### Lesson learned

- Difficult to get consensus agreement
- Imply limited biodiesel trade between economies
- Wide range of emission regulation among APEC members make harmonization difficult (e.g. Sulfur & Phosphorous)
- Data testing with mostly RME, SME and PME on Euro 0 to 2 vehicles
- Future work
  - conduct an assessment of testing facilities and laboratories in member economies.;
  - establish accredited test facilities for round-robin testing between APEC economies;
  - review all available test data for feedstock dependant variables, and identify further research work required in support of performance based specifications;
  - include the FIE manufacturers in further discussion

# **TriPartite<sup>†</sup>**



- Brazil, EU & US started TriPartite Task Force
  - In 2006, Govt of Brazil, EU & US discussed on international trade in biofuel, which would require internationally recognized standard
  - In Feb 2007, conference organized by CEN with US National Institute of Standards and Technology (NIST) and Brazil National Institute of Metrology, Standardization, and Industrial Quality (INMETRO) to discuss on potential barrier from different standard
  - Publish 'white paper on internationally compatible biofuel standards' in Dec 2007
- Classification of biofuel properties
  - Category A: specifications that are already similar;
  - Category B: specifications with parameters and methods, but which might be aligned by work on documentary standards and measurement standards; and
  - Category C: specifications with fundamental differences, perhaps due to emissions or environmental regulations within one or more regions, which are not deemed bridgeable in the foreseeable future

## **Remark on BDF Properties**



- Biodiesel is defined as
  - mono-alkyl esters of long chain fatty acids derived from plant oils or animal fats and used, for example, as fuel for compression ignition, internal combustion piston engines.
- Comparisons of Brazilian, EU and USA are made on the standards in place at the end of the year <u>2007</u>.
- Brazil and US standard are acceptable for FAEE while EU only FAME
- Brazil and US standard are for blending while EU could use B100

\*<u>http://ec.europa.eu/energy/res/biofuels\_standards/doc/wiriterogaperatedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalisedosanctionalis</u>

## Classification of BDF Properties

a member of NSTD/

| Category A                                 | Category B               | Category C                    |
|--------------------------------------------|--------------------------|-------------------------------|
| similar                                    | significant differences  | fundamental differences       |
|                                            |                          |                               |
| sulfated ash                               | total glycerol content   | sulfur content                |
|                                            |                          |                               |
| alkali and alkaline earth<br>metal content | phosphorus content       | cold climate operability      |
|                                            |                          |                               |
| free glycerol content                      | carbon residue           | cetane number                 |
|                                            |                          |                               |
| copper strip corrosion                     | ester content            | oxidation stability           |
|                                            |                          |                               |
| methanol & ethanol content                 | distillation temperature | mono, di-, tri-acylglycerides |
|                                            |                          |                               |
| acid number                                | flash point              | density                       |
|                                            |                          |                               |
|                                            | total contamination      | kinematic viscosity           |
|                                            |                          |                               |
|                                            | water content & sediment | iodine number                 |
|                                            |                          |                               |
|                                            |                          | linolenic acid content        |
|                                            |                          |                               |
|                                            |                          | polyunsaturated methyl ester  |

\*http://ec.europa.eu/energy/res/biofuels\_standards/doc/winiterogaperal idosandinglogodepability 20

# Rating of Alignment



- A = easily done,
   B = feasible with effort,
   C = not feasible at the present
- Order: BR / EU / US

|          | Category A Parameters          | Category B Parameters       | Category C Parameters         |
|----------|--------------------------------|-----------------------------|-------------------------------|
| <b>\</b> | Misalignment Impact (MI)       | Misalignment Impact (MI)    | Misalignment Impact (MI)      |
|          | Sulfated ash                   | Total glycerol              | Sulfur content                |
|          | (A / A / A)                    | (A / A / A) for limit value | (C / C / C)                   |
|          | MI: very minor                 | (B/B/B) for method          | MI: medium to major           |
|          |                                | MI: minor                   | -                             |
|          | Alkali & alkaline earth metals | Phosphorus content          | Cold climate operability      |
|          | (A / A / A)                    | (A / B / A)                 | (C / C / C)                   |
|          | MI: very minor                 | MI: medium                  | MI: very minor                |
|          | Free glycerol                  | Carbon residue              | Cetane number                 |
|          | (A / B / A)                    | (B / B / B)                 | (C / C / C)                   |
|          | MI: minor                      | MI: very minor              | MI: major                     |
|          | Copper strip corrosion         | Ester content               | Oxidation stability           |
|          | (A / A / B)                    | (B / B / B)                 | (B / C / C)                   |
|          | MI: none                       | MI: very minor              | MI: medium                    |
|          | Methanol & ethanol content     | Distillation temperature    | Mono, di-, tri-acylglycerides |
|          | (A / A / A)                    | (B / B / B)                 | (B / B / C)                   |
|          | MI: medium                     | MI: very minor              | MI: minor                     |
|          | Acid number                    | Flash point                 | Density                       |
|          | (A / B / A)                    | (B / B/ / B)                | (C / C / C)                   |
|          | MI: very minor                 | MI: minor                   | MI: very minor                |
|          |                                | Total contamination         | Kinematic viscosity           |
|          |                                | (B / B / B)                 | (C / C / C)                   |
|          |                                | MI: minor                   | MI: very minor                |
|          |                                | Water content & sediment    | Iodine number                 |
|          |                                | (B / B / B)                 | (A / C / A)                   |
|          |                                | MI: medium/major            | MI: major                     |
|          |                                |                             | Linolenic acid                |
|          |                                |                             | (A / C / A)                   |
|          |                                |                             | MI: major                     |
|          |                                |                             | Polyunsaturated               |
|          |                                |                             | methyl ester                  |
|          |                                |                             | (C / C / C)                   |
|          |                                |                             | MI: major                     |



#### 2.5.5.5 ANNEX 2: Tri-partite Task Force on Biodiesel Standards

|                             | Comparison of Brazilian, European and United States biodiesel parameters |                                                               |                       |                                                                                                                                                                                              |                                                                                                                           |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                             | Pr                                                                       | operty Comp                                                   | arison                |                                                                                                                                                                                              |                                                                                                                           |  |  |  |  |
| Property                    | Easily<br>aligned<br>(A)                                                 | Alignment<br>possible<br>with<br>discussion<br>or work<br>(B) | Very Different<br>(C) | Comments                                                                                                                                                                                     | Test Methods                                                                                                              |  |  |  |  |
| Free glycerol               | USA, BR                                                                  | EU                                                            |                       | Decimal place to be clarified. Work needed to overcome changing the significant digits.                                                                                                      | BR needs new test method<br>applicable to castor oil FAME and<br>FAEE to achieve precision needed<br>for redefined limit. |  |  |  |  |
| Sulfated ash                | BR EU USA                                                                |                                                               |                       | Decimal place to be clarified, minor<br>issue if more decimal places used as<br>this changes the specification, major<br>issue if not. EU and BR could<br>consider modifying limit to 0.020. | ISO method to be checked for validity<br>of precision for adjusted limit value                                            |  |  |  |  |
| Group I metals<br>(Na+K)    | BR EU USA                                                                |                                                               |                       | Brazil discussing adoption of same<br>limits as EU and USA, considered<br>probable.                                                                                                          | ICP method is being balloted in EU<br>as acceptable test method. In BR, an<br>ICP method is being defined.                |  |  |  |  |
| Group II metals<br>(Ca+ Mg) | BR EU USA                                                                |                                                               |                       | Brazil discussing adoption of same limits as EU and USA, considered probable.                                                                                                                | In BR, an ICP method is being defined.                                                                                    |  |  |  |  |



|                           | P     | roperty Comparis | son |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |
|---------------------------|-------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property                  | (A)   | <b>(B)</b>       | (C) | Comments                                                                                                                                                                                                                                                                                                       | Test methods                                                                                                                                                                                                                    |
| Carbon residue            |       | BR USA EU        |     | Limit values for BR USA can be<br>aligned. EU could consider a limit<br>value on basis of changed test<br>method. US could investigate<br>significant digits.                                                                                                                                                  | EU could consider a test method<br>based on 100% sample rather than<br>10% distillation residue                                                                                                                                 |
| Flash point               |       | BR EU USA        |     | Discussions needed to align the limit<br>value. Depends if method used for<br>control of methanol & flash, or flash<br>alone for safety and handling. Work<br>needed to align methods, and<br>regulations category may affect limit<br>alignment possibilities.                                                | Methods different in US and EU<br>which could be major issue for US<br>(D93 vs. D3828). EU will ballot both<br>methods due to new precision data.<br>BR adopts NBR 14598 based on<br>D93, but considers D93 and EN ISO<br>3679. |
| Copper strip<br>corrosion | BR EU | USA              |     | Confirmation needed that USA could<br>agree to the deletion of this<br>parameter. Removal could be<br>considered; need to confirm with<br>heating oil group at ASTM. ASTM<br>does not have separate biodiesel<br>standard for heating oil. All regions<br>will examine opportunity to delete this<br>parameter |                                                                                                                                                                                                                                 |



|                                                      | Property Comparison               |                                                       | son |                                                                                                                                                                                                                                                                                                                              |                                                                                                    |  |
|------------------------------------------------------|-----------------------------------|-------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| Property                                             | (A)                               | <b>(B)</b>                                            | (C) | Comments                                                                                                                                                                                                                                                                                                                     | Test methods                                                                                       |  |
| Phosphorus content                                   | BR USA                            | EU (if current<br>spec changed)                       |     | Limit value reduction now under<br>ballot in EU. Present day limit values<br>may be aligned if BR discussions<br>conclude on this. Possible<br>differences between B100 as a neat<br>fuel and B100 as blend stock for<br>Brazil and US. EU vehicle producers<br>insisting low values needed for<br>exhaust emissions reasons |                                                                                                    |  |
| Total glycerol                                       | BR EU USA<br>(for limit value)    | BR EU USA<br>(for test<br>method)<br>(Medium<br>Term) |     | BR considers new method to be<br>reviewed there allowing not only<br>castor oil but also other feedstocks<br>will allow alignment of three regions                                                                                                                                                                           | Method alignment discussion is necessary as calculations in the methods provide different results. |  |
| Methanol <del>or Ethanol</del><br><del>content</del> | BR, EU, USA<br>(methanol<br>only) | (Ethanol<br>methods in<br>this category)              |     | BR considering alignment on EU.<br>USA could consider adding<br>significant digit to align with Brazil<br>and EU limits, and asks to include<br>ethanol for the case of ethyl esters.<br>For USA, parameter will be met if<br>flash point used for methanol<br>presence.                                                     | New method for measuring ethanol is being developed in Brazil.                                     |  |
| Acid number                                          | BR EU USA<br>(for limit)          | USA<br>(for method)                                   |     | EU and USA limits are aligned, BR<br>considering alignment with them.<br>USA could consider aligning with<br>Brazil and EU method.                                                                                                                                                                                           | Methods are dramatically different.                                                                |  |



|                                 | ]   | Property Comparis             | son |                                                                                                                                                                                                                                                        |                                                                                                                                                             |
|---------------------------------|-----|-------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property                        | (A) | <b>(B)</b>                    | (C) | Comments                                                                                                                                                                                                                                               | Test methods                                                                                                                                                |
| Distillation<br>temperature 90% |     | BR EU USA<br>(Medium<br>Term) |     | BR and USA are aligned, EU does<br>not have a limit, but in Brazil the<br>elimination of this specification is<br>under discussion. Rationale for limit<br>needs to be discussed to achieve<br>three regions alignment. Limit used<br>to detect fraud. | USA could consider removing T-90 if<br>precision of ester content test<br>method is improved. Efforts are<br>ongoing in EU to do this.                      |
| Ester content                   |     | BR EU USA<br>(Medium<br>Term) |     | EU alone has a limit, BR may align<br>with EU. USA could align with BR<br>and EU if test method precision is<br>improved.                                                                                                                              | BR method for Lauric oils being<br>developed. Precision of the existing<br>EU method under review. EU<br>method under development to<br>include other oils. |
| Water content and<br>Sediment   |     | BR EU USA<br>(Medium<br>Term) |     | BR and USA have aligned combined<br>standard. EU has separate water and<br>sediment (total contamination)<br>standards. BR may align with EU at<br>production site only and not<br>downstream. USA could consider<br>aligning with BR and EU.          |                                                                                                                                                             |
| Water content                   |     | BR EU USA<br>(Medium<br>Term) |     | BR could align with EU at 500ppm, at<br>production plant only and not<br>downstream. US will consider<br>alignment; eventual limit will depend<br>on methods choice.                                                                                   |                                                                                                                                                             |



|                                    | Pı                    | operty Compa                  | rison            |                                                                                                                                                                                                                                                                            |                                                                                                                      |
|------------------------------------|-----------------------|-------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Property                           | (A)                   | <b>(B)</b>                    | (C)              | Comments                                                                                                                                                                                                                                                                   | Test methods                                                                                                         |
| Total contamination<br>(solids)    |                       | BR EU USA<br>(Medium<br>Term) |                  | No limit for BR & USA, but BR and<br>USA may align with EU limit. CEN<br>considering a limit change further to<br>a method precision improvement.                                                                                                                          | ASTM and EU efforts to develop and evaluate modified methods.                                                        |
| Oxidation stability                | BR EU<br>(short term) | BR EU USA<br>(Long Term)      | USA (short term) | Important performance parameter.<br>EU and USA far apart on limit values<br>EU discussion to modify limits. USA<br>limits based on blend stock use only.                                                                                                                   | EU discussing methods covering blends as well as pure fuel.                                                          |
| Mono-, di- & tri-<br>acylglycerols |                       | BR EU                         | USA              | USA does not have limits, BR report<br>only, but BR has developed new<br>methods for biodiesel based on<br>castor. EU looking at mono- in<br>relation to cold climate deposit<br>formation. US and BR could<br>consider individual limits if additional<br>work completed. | Can BR methods be accepted by EU<br>and USA? BR wants castor oil<br>biodiesel to be taken into account in<br>method. |
| Sulfur content                     |                       |                               | BR EU USA        | Limits based on regional regulations.<br>Lowest common denominator<br>probably not possible. May be<br>contractually decided level<br>depending on region importing from<br>elsewhere.                                                                                     |                                                                                                                      |



|                                               | Pi  | roperty Comp | parison   |                                                                                                                                                                                                                                                                                                   |              |
|-----------------------------------------------|-----|--------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Property                                      | (A) | <b>(B)</b>   | (C)       | Comments                                                                                                                                                                                                                                                                                          | Test methods |
| Cold climate<br>operability<br>(Cloud & CFPP) |     |              | BR EU USA | Limits based on regional, climatic<br>conditions. May be contractually<br>decided depending on region<br>importing from elsewhere. Final fuel<br>distributor will take local quality<br>responsibility. "Report" is suggestion.<br>Difference exists between pure fuel<br>use and blendstock use. |              |
| Density                                       |     |              | BR EU USA | EU has upper/lower limits, BR & USA<br>report only. EU may limit feedstock<br>range. Value of parameter<br>questioned, may hinder coconut or<br>castor oil biodiesel.                                                                                                                             |              |
| Kinematic viscosity                           |     |              | BR EU USA | EU has narrow limits; USA has wide<br>limits, BR reports only. BR suggests<br>compromise limits to allow wider<br>feedstocks. Fundamental issue of<br>blend component versus finished fuel<br>requirements.                                                                                       |              |
| Cetane number                                 |     |              | BR EU USA | Wide divergence in limit values<br>based on regional regulations. BR<br>suggests report only, leaving limit<br>values to be defined in commercial<br>agreements. High values may hinder<br>feedstock choice.                                                                                      |              |



|                                                       | Pr     | operty Comp | arison |                                                                                                                                                                                                                                                                                                                                                                          |                                              |
|-------------------------------------------------------|--------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Property                                              | (A)    | <b>(B)</b>  | (C)    | Comments                                                                                                                                                                                                                                                                                                                                                                 | Test methods                                 |
| lodine number                                         | BR USA |             | EU     | EU limit value seen as reducing<br>feedstock choice. EU discussing a<br>moderately higher limit value. BR and<br>USA disagree with iodine number<br>parameter, and rely on stability limit.<br>Oxidation stability test would then be<br>of prime importance. EU unwilling to<br>delete the parameter as suggested<br>by BR & US but willing to discuss<br>limit values. |                                              |
| Linolenic acid<br>methyl ester                        | BR USA |             | EU     | EU has limit value, BR & USA do not.<br>BR considers it excludes some<br>promising oils. BR & USA suggest<br>relying on oxidation stability<br>parameter.                                                                                                                                                                                                                |                                              |
| Polyunsaturated<br>(≥4 double bonds)<br>methyl esters | BR USA |             | EU     | EU has limit value, BR & USA do not.<br>BR considers it excludes some<br>promising oils. BR & USA suggest<br>relying on oxidation stability<br>parameter.                                                                                                                                                                                                                | EU method needs to be verified and balloted. |

#### 2.5.5.6 Annex 3: Biodiesel Specification Requirements

|                                |                      | Test Meth             | ıods                                       | Limits      |                    |                |                  |  |
|--------------------------------|----------------------|-----------------------|--------------------------------------------|-------------|--------------------|----------------|------------------|--|
| Property                       | USA<br>ASTM<br>D6751 | EU<br>EN 14214        | Brazil<br>ANP 42                           | Units       | USA<br>ASTM D 6751 | EU<br>EN 14214 | Brazil<br>ANP 42 |  |
| Sulfated Ash                   | D874                 | ISO 3987              | ABNT NBR 6294/<br>ISO 3987/<br>ASTM D874   | % mass      | 0.020 max          | 0.02 max       | 0.02 max         |  |
| Group I Metals<br>(Na + K)     | UOP 391              | EN 14108/<br>EN 14109 | EN 14108/<br>EN 14109                      | mg/kg       | 5 max              | 5 max          | 10 max           |  |
| Group II Metals<br>(Ca + mg)   | UOP 389              | EN 14538              | EN 14538                                   | mg/kg       | 5 max              | 5 max          | Report           |  |
| Methanol or<br>Ethanol Content | -                    | EN 14110              | ABNT NBR 15343/<br>EN 14110                | % mass      |                    | 0.20 max       | 0.50 max         |  |
| Acid Number                    | D664                 | EN 14104              | ABNT NBR 14448/<br>EN 14104/<br>ASTM D664  | mgKO<br>H/g | 0.50 max           | 0.50 max       | 0.80 max         |  |
| Free Glycerol                  | D6584                | EN 14105/<br>EN 14106 | ABNT NBR 15341/<br>EN 14105/<br>EN 14106   | % mass      | 0.02 max           | 0.02 max       | 0.02 max         |  |
| Total Glycerol                 | D6584                | EN 14105              | ABNT NBR 15344/<br>EN 14105/<br>ASTM D6584 | % mass      | 0.24 max           | 0.25 max       | 0.38 max         |  |
| Copper Strip<br>Corrosion      | D130                 | EN 2160               | ABNT NBR 14359/<br>EN 2160/<br>ASTM D130   | Rating      | Class 3            | Class 1        | Class 1          |  |

| Property                                      |          | <b>Test Methods</b> |                                         | Units Limits |           |            |           |
|-----------------------------------------------|----------|---------------------|-----------------------------------------|--------------|-----------|------------|-----------|
| Phosphorus Content                            | D4951    | EN 14107            | EN 14107/<br>ASTM D4951                 | % mass       | 0.001 max | 0.0010 max | Report    |
| Carbon Residue (on<br>100% Sample)            | D4530    | EN 10370            | EN 10370/<br>ASTM D4530                 | % mass       | 0.050 max |            | 0.10 max  |
| Ester Content                                 | -        | EN 14103            | ABNT NBR 15342/<br>EN 14103             | % mass       | -         | 96.5 min   | Report    |
| Distillation<br>Temperature, 90%<br>Recovered | D1160    | -                   | D1160                                   | °C           | 360 max   | -          | 360 max   |
| Flash Point                                   | D93      | EN 3679             | ABNT NBR 14598/<br>EN 3679/<br>ASTM D93 | °C           | 130.0 min | 120 min    | 100 min   |
| Total<br>Contamination                        | -        | EN 12662            | EN 12662                                | mg/kg        | <u></u>   | 24 max     | Report    |
| Water and<br>Sediment                         | D2709    | -                   | D2709                                   | % volume     | 0.050 max |            | 0.050 max |
| Water Content                                 |          | EN 12937            |                                         | mg/kg        | -         | 500 max    |           |
| Oxidation Stability,<br>110°C                 | EN 14112 | EN 14112            | EN 14112                                | hours        | 3.0 min   | 6.0 min    | 6.0 min   |

| Property                       |       | Test Methods          |                                                                | Units             |        | Limits                                                                                                                |              |
|--------------------------------|-------|-----------------------|----------------------------------------------------------------|-------------------|--------|-----------------------------------------------------------------------------------------------------------------------|--------------|
| Monoacylglycerol<br>Content    | -     | EN 14105              | ABNT NBR 15342/<br>EN 14105                                    | % mass            |        | 0.80 max                                                                                                              | -            |
| Diacylglycerol<br>Content      | -     | EN 14105              | ABNT NBR 15342/<br>EN 14105                                    | % mass            |        | 0.20 max                                                                                                              | -            |
| Triacylglycerol<br>Content     | -     | EN 14105              | ABNT NBR 15344/<br>EN 14105                                    | % mass            |        | 0.20 max                                                                                                              | -            |
| Sulfur Content                 | D5453 | EN 20846/<br>EN 20884 | EN 20846/<br>EN 20884/<br>ASTM D5453                           | mg/kg             | 15/500 | 10                                                                                                                    | 500 (note 3) |
| Cloud Point                    | D2500 | EN 23015              |                                                                | °C                | Report |                                                                                                                       |              |
| Cold Filter<br>Plugging Point  | D6371 | EN 116                | ABNT NBR14747/<br>ASTM D6371                                   | °C                |        | (5 max (Grade A)<br>0 max (Grade B)<br>-5 max (Grade C)<br>-10 max (Grade D)<br>-15 max (Grade E)<br>-20 max Grade F) |              |
| Density at 15°C                |       | EN 3675/<br>EN 12185  |                                                                | kg/m <sup>3</sup> |        | 860 - 900                                                                                                             |              |
| Density at 20°C                |       |                       | ABNT NBR 7148/<br>ABNT NBR 14065/<br>ASTM D1298/<br>ASTM D4052 | kg/m3             |        |                                                                                                                       | Report       |
| Linolenic Acid<br>Methyl Ester | -     | EN 14103              | -                                                              | % mass            | -      | 12.0 max                                                                                                              | -            |

| Property                                               | Test Methods |          |                | Units              | Limits |          |        |
|--------------------------------------------------------|--------------|----------|----------------|--------------------|--------|----------|--------|
| Polyunsaturated<br>(≥ 4 double bonds)<br>Methyl Esters |              |          |                | % mass             | -      | 1 max    | -      |
| Cetane Number                                          | D 613        | EN 5165  | EN 5165 / D613 |                    | 47 min | 51.0 min | Report |
| Iodine Value                                           | -            | EN 14111 | EN ISO14111    | g iodine/<br>100 g | -      | 120 max  | -      |



European Automobile Manufacturers Association







B-1040 Brussels, Belgium Tel: +32 2 732 55 50 Fax: +32 2 738 73 10 www.aces.be



Alliance of Automobile Manufacturers 1401 Eye Street, N.W. Suite 900 Washington D.C., 2005 Tel: 1 (202) 326-5560 Fax: 1 (202) 326-5568 www.autoallance.org



Engine Manufacturers Association Two North LaSale Street, Suite 1700 Chicago IL, 60602 Main Telephone I (312) 827-8730 Facsimile I (312) 827-8737 www.enginemanufactures.org



Japan Automobile Manufacturers Association Jidoaha Kiakan I-30,5kiba Daimon I-Chome Minata-ku,7koya (15-5012) Japan Tel:+81-3-5405-6125 Fizic:+81-3-5405-6125 Fizic:+81-3-5405-6126 www.japanauto.com







From the

Worldwide Fuel Charter

Committee

BIODIESEL

GUIDELINES

**MARCH 2009** 

## WWFC



- Members
  - ACEA (European Automobile Manufacturers Association / <u>www.acea.be</u> / Brussels, Belgium;) representing: BMW, DAF Trucks, Fiat Auto, Ford of Europe, General Motors Europe, MAN Nutzfahrzeuge, DaimlerChrysler, Porsche, PSA Peugeot Citroen, Renault, Scania, Volkswagen, Volvo.
  - Alliance of Automobile Manufacturers / www.autoalliance.org / Washington D.C., USA) representing: BMW of North America, DaimlerChrysler, Isuzu Motors America, Mazda North America, Mitsubishi Motor America, Nissan North America, Porsche Cars North America, Toyota Motor North America, Volkswagen of North America.
  - EMA (Engine Manufacturers Association / www.enginemanufacturers.org / Chicago, USA) representing: Briggs & Stratton, Caterpillar, Cummins, DaimlerChrysler, Deere, Detroit Diesel, Deutz, Ford Motor, General Motors, Hino Motors, International Truck & Engine, Isuzu Motor, Kohler, Komatsu, Kubota, Mitsubishi Engine, Mitsubishi Fuso Truck, Onan-Cummins Power, Volvo Powertrain, Waukesha Engine, Dresser, Yamaha Motor, Yanmar Diesel.
  - JAMA (Japan Automobile Manufacturers Association / <u>www.japanauto.com</u> / Tokyo, Japan) representing: Daihatsu Motor, Fuji Heavy Industries, General Motors Japan, Hito Motors, Honda Motor, Isuzu Motor, Kawasaki Heavy Industries, Mazda Motors, Mitsubishi Motors, Nissan Diesel Motor, Nissan, Motor, Suzuki Motor, Toyota Motor, Yamaha Motor.

# WWFC



- Associated members
  - AIAM (Association of International Automobile Manufacturers)
  - AIAMC (Association of International Automobile Manufacturers of Canada)
  - AMIA (Associacion Mexicana de la Industria Automotriz)
  - ANFAVEA (Brazilian Association of Motor Vehicles)
  - CVMA (Canadian Vehicle Manufacturers'Association)
  - CAMPI (Chamber of Automobile Manufacturers of the Philippines)
  - CAAI (Chinese Association of Automotive Industry)
  - IAF (Indonesia Automotive Federation)
  - KAMA (Korean Automobile Manufacturers Association)
  - NAAMSA (National Association of Automobile Manufacturers of South Africa)
  - MAA (Malaysian Automotive Association)
  - TAIA (Thai Automotive Industry Association)
  - Vietnam Automobile Manufacturers Association (VAMA) A Driving Force for National Science and Technology Capability

## **Definition of Fuel Properties**



- <u>Category 1</u> fuels represent the lowest quality and can be found in markets with no or first level of emission control.
  - A category 1 diesel fuel is characterized by a cetane number of min. 48.0 and a sulfur content of max. 3000 mg/kg.
- <u>Category 2</u> fuels represent an improved quality level and can be found in markets with stringent requirements for emission control (e.g. US Tier 0 or 1, EURO 1 and 2). Could allow up to 5% blend
  - A category 2 diesel fuel is characterized e.g. by a cetane number of min. 53.0 and a sulfur content of max. 300 mg/kg.
- <u>Category 3</u> fuels represent a further improved quality and can be found in markets with advanced requirements for emission control (e.g. US California LEV, ULEV and EURO 3 and 4).
  - A category 3 diesel fuel is characterized by e.g. a cetane number of min. 55 and a Sulfur content of max. 30 mg/kg.
- <u>Category 4</u> fuels represent further advanced requirements for emission control, to enable sophisticated NOx and PM after-treatment technologies (e.g. US California LEV-II, US EPA Tier 2, EURO 4 in conjunction with increased fuel efficiency constraints).
  - A category 4 diesel fuel is characterized by a sulfur content of max. 10 mg/kg.

#### **Summary of Guidelines**

| Property                                               | Value                       | Units                   | Test Methods                                                               |  |  |
|--------------------------------------------------------|-----------------------------|-------------------------|----------------------------------------------------------------------------|--|--|
| Ester content                                          | 96 5 min                    | % m/m                   | EN 14103 mod                                                               |  |  |
|                                                        | 1111 0.0                    | 70 HIY HI               | Other: ABNT NBR 15342                                                      |  |  |
| Linolenic Acid Methyl Ester                            | 12.0 max                    | % m/m                   | EN 14103 mod                                                               |  |  |
| Polyunsaturated acid methyl<br>ester (≥4 double bonds) | 1 max                       | % m/m                   | prEN 15779                                                                 |  |  |
| Oxidation Stability:                                   | 10 min                      | br                      | prEN 15751 or EN 14112 as                                                  |  |  |
| Induction Period                                       | 10 1111                     | 111                     | alternative                                                                |  |  |
| lodine Number                                          | <b>130 max</b> <sup>1</sup> | g l <sub>2</sub> /100 g | EN 14111                                                                   |  |  |
|                                                        |                             |                         | ISO 6618                                                                   |  |  |
| Total Acid Number                                      | 0 E may                     | maKOUKa                 | ASTM D664, D974                                                            |  |  |
| Total Acid Number                                      | 0.5 max                     | mg KOH/g                | JIS K2501                                                                  |  |  |
|                                                        |                             |                         | Other: ABNT NBR 14448                                                      |  |  |
|                                                        |                             |                         | EN 14110                                                                   |  |  |
| Methanol                                               | 0.20 max                    | % m/m                   | JIS K2536                                                                  |  |  |
|                                                        | Oth                         |                         | Other: ABNT NBR 15343                                                      |  |  |
| Glycerides                                             |                             |                         | EN 14105                                                                   |  |  |
|                                                        |                             |                         | EN 14105                                                                   |  |  |
| Mono-glyceride                                         | 0.80 max                    | % m/m                   | ASTM D6584                                                                 |  |  |
|                                                        |                             |                         | Other: ABNT NBR 15342                                                      |  |  |
|                                                        |                             |                         | EN 14105                                                                   |  |  |
| Di-glyceride                                           | 0.20 max                    | % m/m                   | ASTM D6584                                                                 |  |  |
| <b>U</b> ,                                             |                             |                         | Other: ABNT NBR 15342                                                      |  |  |
|                                                        |                             |                         | EN 14105                                                                   |  |  |
| Tri-glyceride                                          | 0.20 max                    | % m/m                   | ASTM D6584                                                                 |  |  |
|                                                        |                             |                         | Other: ABNT NBR 15342                                                      |  |  |
| Glycerin (glycerol)                                    |                             |                         | and begindered and an environment of the foreign environment of additional |  |  |
|                                                        |                             |                         | EN 14105/14106                                                             |  |  |
| Free glycerin                                          | 0.02 max                    | % m/m                   | ASTM D6584                                                                 |  |  |
|                                                        |                             |                         | Other: ABNT NBR 15341                                                      |  |  |
|                                                        |                             |                         | FN 14105                                                                   |  |  |
| Total glycerin                                         | 0.25 max                    | % m/m                   | ASTM D6584                                                                 |  |  |
| 0-7                                                    |                             | ······                  | Other: ABNT NBR 15344                                                      |  |  |
|                                                        |                             |                         | EN ISO 3675                                                                |  |  |
|                                                        |                             |                         | ASTM D4052                                                                 |  |  |
| Density                                                | report                      | g/ml                    | JIS K2249                                                                  |  |  |
|                                                        | icpoir                      | 0,                      | Other: EN ISO 12185                                                        |  |  |
|                                                        |                             |                         | ABNT NBR 7148/14065                                                        |  |  |
|                                                        |                             |                         | EN ISO 3104                                                                |  |  |
|                                                        |                             |                         |                                                                            |  |  |
| Kinematic Viscosity@40°C                               | $20 - 50^{2}$               | $mm^2/c$                | ASTMD445                                                                   |  |  |

This limit may unnecessarily preclude certain feedstocks. Some engine technologies may need a more stringent limit.

# Guideline Summary (1)

%ME, Linolenic acid ME, Polyunsat, acid ME → fuel filter plugging by sludge

- Oxidation stability → peroxide damages part & acid corrodes
- Iodine number → no. of double bond as indicator for oxidation stability
- TAN → acid from process or degradation could harm injection system & metal parts
- Methanol → lower flash point, decrease lubricity, corrode injector
- Mono/di/tri-glycerine & Free/total glycerin → filter pluggging, injector deposit; settling glycerin at tank bottom can attract polar compound (water) orce for National Science and Technology Capability

 $<sup>^2</sup>$  For temperatures at or below –20°C, viscosity should be at or below 48 mm<sup>2</sup>/s to avoid potentially dangerous loads on the fuel injection pump drive system.

#### **Summary of Guidelines**

| Ester content96.5 min% m/mEN 14103 mod<br>Other: ABNT NBR 15342Linolenic Acid Methyl Ester12.0 max% m/mEN 14103 mod<br>Other: ABNT NBR 15342Polyunsaturated acid methyl<br>ester (24 double bonds)1 max% m/mprEN 15751 or EN 14112 as<br>alternativeIodidation Stability:<br>Induction Period10 minhrprEN 15751 or EN 14112 as<br>alternativeIodidation Stability:<br>Iodidation Stability:<br>Iodine Number130 max <sup>1</sup> g ls/100 gEN 14110Total Acid Number0.5 maxmg KOH/gJIS K2536<br>Other: ABNT NBR 15443•Methanol0.20 max% m/mJIS K2536<br>Other: ABNT NBR 15343•GlyceridesEN 14105EN 14105Mono-glyceride0.80 max% m/mASTM D6584<br>Other: ABNT NBR 15342•Di-glyceride0.20 max% m/mASTM D6584<br>Other: ABNT NBR 15342•Di-glyceride0.20 max% m/mASTM D6584<br>Other: ABNT NBR 15342Di-glyceride0.20 max% m/mASTM D6584<br>Other: ABNT NBR 15342Di-glyceride0.20 max% m/mASTM D6584<br>Other: ABNT NBR 15342Tri-glyceride0.20 max% m/mASTM D6584<br>Other: ABNT NBR 15341Free glycerin0.25 max% m/mASTM D6584<br>Other: ABNT NBR 15341Total glycerin0.25 max% m/mASTM D6584<br>Other: ABNT NBR 15341En 14105ASTM D6584<br>Other: ABNT NBR 15344EN 150 3104Free glycerin0.25 max% m/mASTM D6584<br>Other: R ISO 12185,<br>ASTM D4052<                                                                                                                                                                          | Property                                               | Value                       | Units                   | Test Methods                                                                         | Gui |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|-------------------------|--------------------------------------------------------------------------------------|-----|--|--|
| Lade Content 1000 max 1000 mm 10000 mm 100000 mm 100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ester content                                          | 96 5 min                    | % m/m                   | EN 14103 mod                                                                         |     |  |  |
| Linolenic Acid Methyl Ester       12.0 max       % m/m       EN 14103 mod         Polyunsaturated acid methyl       1 max       % m/m       prEN 15779         Oxidation Stability:       10 min       hr       alternative         Induction Period       130 max <sup>1</sup> g ls/100 g       EN 14111         Iotic Number       130 max <sup>1</sup> g ls/100 g       EN 14111         Total Acid Number       0.5 max       mg KOH/g       ASTM D664, D974         Jis K2501       Other: ABNT NBR 14448       EN 14110         Methanol       0.20 max       % m/m       Jis K2536         Ohono-glyceride       0.80 max       % m/m       ASTM D6584         Other: ABNT NBR 15343       Other: ABNT NBR 15342       EN 14105         Di-glyceride       0.20 max       % m/m       ASTM D6584         Other: ABNT NBR 15342       EN 14105       EN 14105         Tri-glyceride       0.20 max       % m/m       ASTM D6584         Other: ABNT NBR 15342       EN 14105       EN 14105         Tri-glyceride       0.20 max       % m/m       ASTM D6584         Other: ABNT NBR 15342       EN 14105       EN 14105         Free glycerin       0.02 max       % m/m       ASTM D6584         Other                                                                                                                                                                                                           |                                                        | 50.51111                    | 70 HIY HI               | Other: ABNT NBR 15342                                                                |     |  |  |
| Polyunsaturated acid methyl<br>ester (24 double bonds)       1 max       % m/m       prEN 15779       •         Oxidation Stability:<br>Induction Stability:       10 min       hr       alternative       alternative         Iodine Number       130 max <sup>1</sup> g l <sub>2</sub> /100 g       EN 14111       ESO 6618         Total Acid Number       0.5 max       mg KOH/g       ASTM D664, D974       JIS (2501       •         Other: ABNT NBR 14448       EN 14110       Uther: ABNT NBR 14448       •       •       •         Methanol       0.20 max       % m/m       JIS (2501       •       •       •         Methanol       0.20 max       % m/m       JIS (2501       •       •       •       •         Mono-glyceride       0.80 max       % m/m       JIS (2536       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •                                                                                                                                                                                                                                                                     | Linolenic Acid Methyl Ester                            | 12.0 max                    | % m/m                   | EN 14103 mod                                                                         |     |  |  |
| Oxidation Stability:<br>Induction Period         10 min         hr         prEN 15751 or EN 14112 as<br>alternative           Iodic Number         130 max <sup>1</sup> g l <sub>2</sub> /100 g         EN 14111           ISO 6618         ASTM D664, D974<br>JIS K2501         Stote 618           Total Acid Number         0.5 max         mg KOH/g         ASTM D664, D974<br>JIS K2501         Other: ABNT NBR 14448           Methanol         0.20 max         % m/m         JIS K2536<br>Other: ABNT NBR 15343         Other: ABNT NBR 15343           Glycerides         EN 14110         EN 14105         EN 14105           Mono-glyceride         0.80 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105         STM D6584           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Density         report         g/ml         JIS K2249<br>Other: K ISO 12185,<br>ASTM D4052         EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> | Polyunsaturated acid methyl<br>ester (≥4 double bonds) | 1 max                       | % m/m                   | prEN 15779                                                                           | •   |  |  |
| Induction Period         ID min         nr         alternative           Iodine Number         130 max <sup>1</sup> g l <sub>y</sub> /100 g         EN 14111           Total Acid Number         0.5 max         mg KOH/g         ASTM D654, D974<br>JIS K2501         -           Methanol         0.20 max         % m/m         IS K2536<br>Other: ABNT NBR 14448         -           Glycerides         EN 14110         -         -         -           Mono-glyceride         0.80 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342         -           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342         -           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342         -           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342         -           Glycerin (glycerol)         EN 14105         -         -         -           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341         -           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341         -           Density         report         g/ml         IS K2249<br>Other: R ISO 12185,<br>ABNT NBR 7148/14065         -                                                                                      | Oxidation Stability:                                   | 10                          | E.,                     | prEN 15751 or EN 14112 as                                                            |     |  |  |
| Iodine Number         130 max <sup>1</sup> g lz/100 g         EN 14111           Total Acid Number         0.5 max         mg KOH/g         IS 6618         ASTM D664, D974           JIS K2501         Other: ABNT NBR 14448         EN 14110         Bis K2501         Other: ABNT NBR 14448           Methanol         0.20 max         % m/m         JIS K2536         Other: ABNT NBR 15343           Glycerides         EN 14105         EN 14105           Mono-glyceride         0.80 max         % m/m         ASTM D6584           Di-glyceride         0.20 max         % m/m         ASTM D6584           Di-glyceride         0.20 max         % m/m         ASTM D6584           Di-glyceride         0.20 max         % m/m         ASTM D6584           Tri-glyceride         0.20 max         % m/m         ASTM D6584           Glycerin (glycerol)         EN 14105         EN 14105           Free glycerin         0.02 max         % m/m         ASTM D6584           Other: ABNT NBR 15342         EN 14105         EN 14105           Total glycerin         0.25 max         % m/m         ASTM D6584           Other: ABNT NBR 15344         EN 150 3104         EN 150 3104           Density         report         g/ml <td< td=""><td>Induction Period</td><td>10 min</td><td>nr</td><td>alternative</td><td></td></td<>                                                                    | Induction Period                                       | 10 min                      | nr                      | alternative                                                                          |     |  |  |
| Total Acid Number       0.5 max       mg KOH/g       ISO 6618         Mathematical Acid Number       0.5 max       mg KOH/g       ISC 2501         Other: ABNT NBR 14448       EN 14110         Methanol       0.20 max       % m/m       JIS K2536         Glycerides       EN 14105         Mono-glyceride       0.80 max       % m/m       ASTM D6584         Di-glyceride       0.20 max       % m/m       ASTM D6584         Di-glyceride       0.20 max       % m/m       ASTM D6584         Other: ABNT NBR 15342       EN 14105         Tri-glyceride       0.20 max       % m/m       ASTM D6584         Other: ABNT NBR 15342       EN 14105         Glycerin (glycerol)       EN 14105       EN 14105         Free glycerin       0.02 max       % m/m       ASTM D6584         Other: ABNT NBR 15341       EN 14105       EN 14105         Total glycerin       0.25 max       % m/m       ASTM D6584         Other: ABNT NBR 15344       EN 14105       EN 14105         Density       report       g/ml       JIS K2249         Other: EN ISO 3104       ASTM D455       ASTM D455         Kinematic Viscosity@40°C       2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s       ASTM D455 <td>lodine Number</td> <td><b>130</b> max<sup>1</sup></td> <td>g l<sub>2</sub>/100 g</td> <td>EN 14111</td> <td></td>                                                                                                   | lodine Number                                          | <b>130</b> max <sup>1</sup> | g l <sub>2</sub> /100 g | EN 14111                                                                             |     |  |  |
| Total Acid Number         0.5 max         mg KOH/g         ASTM D664, D974<br>JIS K2501<br>Other: ABNT NBR 14448           Methanol         0.20 max         % m/m         JIS K2501<br>Other: ABNT NBR 14448           Methanol         0.20 max         % m/m         JIS K2536<br>Other: ABNT NBR 15343           Glycerides         EN 14105           Mono-glyceride         0.80 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105         EN 14105           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Free glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Density         report         g/ml         JIS K2283         EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445<br>JIS K2283         EN ISO 3104                                                           |                                                        |                             |                         | ISO 6618                                                                             |     |  |  |
| Total Acid Number         0.5 max         mg KOH/g         JIS K2501           Other: ABNT NBR 14448         0         Other: ABNT NBR 14448           Methanol         0.20 max         % m/m         JIS K2536           Other: ABNT NBR 15343         EN 14110           Glycerides         EN 14105           Mono-glyceride         0.80 max         % m/m           ASTM D6584         Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m           ASTM D6584         Other: ABNT NBR 15342           EN 14105         EN 14105           Tri-glyceride         0.20 max         % m/m           ASTM D6584         Other: ABNT NBR 15342           EN 14105         EN 14105           Tri-glyceride         0.20 max         % m/m           ASTM D6584         Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105           Free glycerin         0.02 max         % m/m           ASTM D6584         Other: ABNT NBR 15341           EN 14105         EN 14105           Total glycerin         0.25 max         % m/m           ASTM D6584         Other: ABNT NBR 15344           EN ISO 3675         ASTM D6584           Other: EN ISO 1                                                                                                                                                                                                                        | T                                                      | 0.5                         | KOUL                    | ASTM D664, D974                                                                      |     |  |  |
| $ \begin{array}{c c c c c c } & \begin{tabular}{ c c c c c c } & \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Acid Number                                      | 0.5 max                     | mg KOH/g                | JIS K2501                                                                            | •   |  |  |
| Methanol         0.20 max         % m/m         EN 14110<br>JIS K2536<br>Other: ABNT NBR 15343           Glycerides         EN 14105         EN 14105           Mono-glyceride         0.80 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105         EN 14105           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Density         report         g/ml         JIS K2249<br>Other: EN ISO 12185,<br>ASTM D4052           Density         report         g/ml         JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD45                                                                                                                                                      |                                                        |                             |                         | Other: ABNT NBR 14448                                                                |     |  |  |
| Methanol         0.20 max         % m/m         JIS K2536<br>Other: ABNT NBR 15343           Glycerides         EN 14105           Mono-glyceride         0.80 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105         EN 14105           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Total glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Density         report         g/ml         JIS K2249<br>Other: ABNT NBR 15344           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD45                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                             |                         | EN 14110                                                                             |     |  |  |
| Glycerides         EN 14105           Mono-glyceride         0.80 max         % m/m         ASTM D584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         % m/m         ASTM D584<br>Other: ABNT NBR 15342           Free glycerin         0.02 max         % m/m         ASTM D584<br>Other: ABNT NBR 15342           Total glycerin         0.25 max         % m/m         ASTM D584<br>Other: ABNT NBR 15341           Density         report         g/ml         JIS K2249<br>Other: EN ISO 3675<br>ASTM D4052           Monto-glycerin         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD45           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD45                                                                                                                                                                                                                                                                                                                                                                                        | Methanol                                               | 0.20 max                    | % m/m                   | JIS K2536                                                                            |     |  |  |
| Glycerides         EN 14105           Mono-glyceride         0.80 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105         EN 14105           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105/14106         EN 14105           Total glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           En 150 3675         Mm/m         ASTM D6584<br>Other: ABNT NBR 15344         EN ISO 3675           Density         report         g/ml         JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065         EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                              |                                                        |                             | Other: ABNT NBR 15343   |                                                                                      |     |  |  |
| Mono-glyceride         0.80 max         % m/m         EN 14105<br>ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105         EN 14105           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105/14106         EN 14105           Total glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Density         report         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           EN ISO 3675<br>ASTM D4052         EN ISO 3675<br>ASTM D4052           Density         report         g/ml         JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                              | Glycerides                                             |                             |                         | EN 14105                                                                             |     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                             |                         | EN 14105                                                                             |     |  |  |
| Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         EN 14105           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Density         report         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTM D4052<br>HS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mono-glyceride                                         | 0.80 max                    | % m/m                   | ASTM D6584                                                                           |     |  |  |
| Di-glyceride         0.20 max         % m/m         EN 14105<br>ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)         60.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Density         report         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Mark         Fill 14105         ASTM D6584<br>Other: ABNT NBR 15344           Mark         8 m/m         ASTM D6584<br>Other: ABNT NBR 15344           Mark         Fill 150 31675<br>ASTM D4052         ASTM D4052           Density         report         g/ml         JIS K2249<br>Other: EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445           JIS K2283         JIS K2283         JIS K2283                                                                                                                                                                                                                  | 3,                                                     |                             |                         | Other: ABNT NBR 15342                                                                |     |  |  |
| Di-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Tri-glyceride         0.20 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Glycerin (glycerol)          EN 14105/14106           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15342           Total glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Density         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Density         report         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Mark         % m/m         ASTM D4052           Density         report         g/ml         JIS K2249<br>Other: EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD45<br>JIS K2283                                                                                                                                                                                    |                                                        |                             |                         | EN 14105                                                                             |     |  |  |
| Tri-glyceride       0.20 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15342         Glycerin (glycerol)       EN 14105/14106         Free glycerin       0.02 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15342         Total glycerin       0.02 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15341         Total glycerin       0.25 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15341         Density       report       % m/m       ASTM D6584<br>Other: ABNT NBR 15344         Density       report       g/ml       JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065         Kinematic Viscosity@40°C       2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s       ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Di-glyceride                                           | 0.20 max                    | % m/m                   | ASTM D6584                                                                           |     |  |  |
| Tri-glyceride       0.20 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15342         Glycerin (glycerol)       EN 14105/14106         Free glycerin       0.02 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15341         Total glycerin       0.25 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15341         Total glycerin       0.25 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15344         Density       report       % m/m       ASTM D6584<br>Other: ABNT NBR 15344         EN ISO 3675<br>ASTM D4052       MSTM D4052       JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065         Kinematic Viscosity@40°C       2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s       ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                             |                         | Other: ABNT NBR 15342                                                                |     |  |  |
| Tri-glyceride       0.20 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15342         Glycerin (glycerol)       EN 14105/14106         Free glycerin       0.02 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15341         Total glycerin       0.25 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15341         Total glycerin       0.25 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15344         Density       0.25 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15344         Density       report       g/ml       JIS K2249<br>Other: EN ISO 3675<br>ASTM D4052         Density       report       g/ml       JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065         Kinematic Viscosity@40°C       2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s       ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                             |                         | EN 14105                                                                             |     |  |  |
| Glycerin (glycerol)       Other: ABNT NBR 15342         Glycerin (glycerol)       EN 14105/14106         Free glycerin       0.02 max       % m/m       ASTM D6584         Other: ABNT NBR 15341       EN 14105         Total glycerin       0.25 max       % m/m       ASTM D6584         Other: ABNT NBR 15341       EN 14105         Density       0.25 max       % m/m       ASTM D6584         Other: ABNT NBR 15344       EN 150 3675         Density       report       g/ml       JIS K2249         Other: EN ISO 3104       Other: EN ISO 3104         Kinematic Viscosity@40°C       2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s       ASTMD445         JIS K2283       JIS K2283       ASTMD445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tri-glyceride                                          | 0.20 max                    | % m/m                   | ASTM D6584                                                                           |     |  |  |
| Glycerin (glycerol)         EN 14105/14106           Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Density         report         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Density         report         g/ml         JIS K2249<br>Other: EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,                                                     |                             |                         | Other: ABNT NBR 15342                                                                |     |  |  |
| Free glycerin       0.02 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15341         Total glycerin       0.25 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15341         Total glycerin       0.25 max       % m/m       ASTM D6584<br>Other: ABNT NBR 15344         Density       report       g/ml       JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065         Kinematic Viscosity@40°C       2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s       ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glycerin (glycerol)                                    |                             |                         | and find service and the produced out that solver south the service of the solution. |     |  |  |
| Free glycerin         0.02 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15341           Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Density         report         g/ml         JIS K2249<br>Other: EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD405<br>ASTMD405<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                             |                         | EN 14105/14106                                                                       |     |  |  |
| Total glycerin       0.25 max       % m/m       ASTM D6584         Total glycerin       0.25 max       % m/m       ASTM D6584         Other: ABNT NBR 15344       Other: ABNT NBR 15344       EN ISO 3675         Density       report       g/ml       JIS K2249         Other: EN ISO 12185,<br>ABNT NBR 7148/14065       ABNT NBR 7148/14065       EN ISO 3104         Kinematic Viscosity@40°C       2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s       ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Free glycerin                                          | 0.02 max                    | % m/m                   | ASTM D6584                                                                           |     |  |  |
| Total glycerin         0.25 max         % m/m         EN 14105<br>ASTM D6584<br>Other: ABNT NBR 15344           Density         report         g/ml         EN ISO 3675<br>ASTM D4052           Density         report         g/ml         JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>,</b>                                               |                             |                         | Other: ABNT NBR 15341                                                                |     |  |  |
| Total glycerin         0.25 max         % m/m         ASTM D6584<br>Other: ABNT NBR 15344           Density         report         g/ml         EN ISO 3675<br>ASTM D4052           Density         g/ml         JIS K2249<br>Other: EN ISO 12185,<br>ABNT NBR 7148/14065           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         EN ISO 3104<br>ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                             |                         | EN 14105                                                                             |     |  |  |
| Other:         ABNT NBR 15344           Density         report         g/ml         JIS K2249           Other:         EN ISO 3675         ASTM D4052           Density         report         g/ml         JIS K2249           Other:         EN ISO 12185,<br>ABNT NBR 7148/14065         ABNT NBR 7148/14065           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total glycerin                                         | 0.25 max                    | % m/m                   | ASTM D6584                                                                           |     |  |  |
| Density         report         g/ml         JIS K2249           Other:         EN ISO 3104         EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445           JIS K2283         JIS K2283         ASTMD445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,                                                     |                             |                         | Other: ABNT NBR 15344                                                                |     |  |  |
| Density         report         g/ml         ASTM D4052           Density         g/ml         JIS K2249         Other: EN ISO 12185,<br>ABNT NBR 7148/14065           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                             |                         | EN ISO 3675                                                                          |     |  |  |
| Density         report         g/ml         JIS K2249           Other:         EN ISO 12185,         ABNT NBR 7148/14065           EN ISO 3104         EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445           JIS K2283         JIS K2283         JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                             |                         | ASTM D4052                                                                           |     |  |  |
| Other:         EN ISO 12185,<br>ABNT NBR 7148/14065           EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Density                                                | report                      | g/ml                    | JIS K2249                                                                            |     |  |  |
| ABNT NBR 7148/14065           EN ISO 3104           Kinematic Viscosity@40°C         2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s         ASTMD445           JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                      |                             | <i>Gi</i> ·····         | Other: EN ISO 12185.                                                                 |     |  |  |
| EN ISO 3104<br>Kinematic Viscosity@40°C 2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                             |                         | ABNT NBR 7148/14065                                                                  |     |  |  |
| Kinematic Viscosity@40°C 2.0 - 5.0 <sup>2</sup> mm <sup>2</sup> /s ASTMD445<br>JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                             |                         | EN ISO 3104                                                                          |     |  |  |
| JIS K2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kinematic Viscosity@40°C                               | $2.0 - 5.0^2$               | mm <sup>2</sup> /s      | ASTMD445                                                                             |     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , <b>C</b> , <b>C</b>                                  |                             |                         | JIS K2283                                                                            |     |  |  |

This limit may unnecessarily preclude certain feedstocks. Some engine technologies may need a more stringent limit.

# Guideline Summary (2)

- Density → used as indicator of contamination by unwanted compounds
- Kinematic viscosity → injector lubrication & fuel atomization

 $<sup>^2</sup>$  For temperatures at or below –20°C, viscosity should be at or below 48 mm<sup>2</sup>/s to avoid potentially dangerous loads on the fuel injection pump drive system.



| Property                                                                                                                                                                                                                                                                                                    | Value                 | Units       | Test Methods              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|---------------------------|
|                                                                                                                                                                                                                                                                                                             |                       |             | Other: ABNT NBR 10441     |
|                                                                                                                                                                                                                                                                                                             | 100                   | 20          | ISO 3679                  |
| Flash Point                                                                                                                                                                                                                                                                                                 | 100 min               | L           | ASTM D93                  |
|                                                                                                                                                                                                                                                                                                             |                       |             | ISO 5165                  |
| Cetane Number                                                                                                                                                                                                                                                                                               | 51 min                |             | ASTM D613                 |
|                                                                                                                                                                                                                                                                                                             |                       |             | JIS K2280                 |
| Water                                                                                                                                                                                                                                                                                                       | 500 max               | mg/kg (ppm) | EN 12937                  |
| Water and Sediment                                                                                                                                                                                                                                                                                          | 0.05 max              | % v/v       | ASTM D2709                |
| roperty<br>lash Point<br>etane Number<br>Vater<br>Vater<br>Vater and Sediment<br>otal Contamination<br>sh Content<br>ulfated Ash<br>arbon Residue:<br>amsbottom, on 100%<br>istillation residue<br>forrosion: Ferrous<br>ulfur<br>hosphorus<br>Ikali metals (Na+K)<br>Ikaline metals (Ca+Mg)<br>race Metals | 24 may                | malka       | EN 12662                  |
| I otal Contamination                                                                                                                                                                                                                                                                                        | 24 max                | mg/kg       | ASTM D2276, D5452, D6217  |
|                                                                                                                                                                                                                                                                                                             |                       |             | ISO 6245                  |
| Ash Content                                                                                                                                                                                                                                                                                                 | 0.001 max             | % m/m       | ASTM D482                 |
|                                                                                                                                                                                                                                                                                                             |                       |             | JIS K2272                 |
|                                                                                                                                                                                                                                                                                                             |                       |             | ISO 3987                  |
| Sulfated Ash                                                                                                                                                                                                                                                                                                | 0.005 max             | % m/m       | ASTM D874                 |
|                                                                                                                                                                                                                                                                                                             |                       |             | Other: ABNT NBR 984       |
| Carbon Residue:                                                                                                                                                                                                                                                                                             |                       |             |                           |
| Ramsbottom, on 100%                                                                                                                                                                                                                                                                                         | 0.05 max              | % m/m       | ASTM D4530                |
| distillation residue                                                                                                                                                                                                                                                                                        |                       |             |                           |
| Corrosion: Ferrous                                                                                                                                                                                                                                                                                          | light rusting,<br>max | Rating      | ASTM D665 Procedure A     |
|                                                                                                                                                                                                                                                                                                             |                       |             | EN 20846/20884            |
| Sulfur                                                                                                                                                                                                                                                                                                      | 10 max                | ppm         | ASTM D5453/D2622          |
|                                                                                                                                                                                                                                                                                                             |                       |             | JIS K3541-1, -2, -6 or -7 |
| Dhacabagus                                                                                                                                                                                                                                                                                                  | 1                     | malka       | EN 14107                  |
| Phosphorus                                                                                                                                                                                                                                                                                                  | 4 max                 | mg/kg       | ASTM D4951, D3231         |
| Alkali metals (Na+K)                                                                                                                                                                                                                                                                                        | 5 max                 | mg/kg       | EN 14108/14109, EN 14538  |
| Alkaline metals (Ca+Mg)                                                                                                                                                                                                                                                                                     | 5 max                 | mg/kg       | EN 14538                  |
| Frace Metals                                                                                                                                                                                                                                                                                                | no addition           |             | ASTM D7111                |

- Flash point → safety handling (storage & transport), also indicator for methanol contamination
  - Cetane → too low cetane causes hard starting, rough operation & increased smoke
- Water/Water and sediment/ Total contamination → water ↑ oxidation & corrosivity, promote microbial growth, filter plugging
- Ash content/Sulfate ash → measure of metal/inorganic contaminant, engine deposit, filter plugging & shorten DPF Carbon residue → tendency to form deposit on injector



| Property                | Value                 | Units       | Test Methods              |  |
|-------------------------|-----------------------|-------------|---------------------------|--|
|                         |                       |             | Other: ABNT NBR 10441     |  |
|                         | 400 .                 | 10          | ISO 3679                  |  |
| Flash Point             | 100 min               | ۰۲          | ASTM D93                  |  |
|                         |                       |             | ISO 5165                  |  |
| Cetane Number           | 51 min                |             | ASTM D613                 |  |
|                         |                       |             | JIS K2280                 |  |
| Water                   | 500 max               | mg/kg (ppm) | EN 12937                  |  |
| Water and Sediment      | 0.05 max              | % v/v       | ASTM D2709                |  |
| <b>T</b>                | 24                    | 1           | EN 12662                  |  |
| Total Contamination     | 24 max                | mg/kg       | ASTM D2276, D5452, D6217  |  |
|                         |                       |             | ISO 6245                  |  |
| Ash Content             | 0.001 max             | % m/m       | ASTM D482                 |  |
|                         |                       |             | JIS K2272                 |  |
|                         |                       |             | ISO 3987                  |  |
| Sulfated Ash            | 0.005 max             | % m/m       | ASTM D874                 |  |
|                         |                       |             | Other: ABNT NBR 984       |  |
| Carbon Residue:         |                       |             |                           |  |
| Ramsbottom, on 100%     | 0.05 max              | % m/m       | ASTM D4530                |  |
| distillation residue    |                       |             |                           |  |
| Corrosion: Ferrous      | light rusting,<br>max | Rating      | ASTM D665 Procedure A     |  |
|                         |                       |             | EN 20846/20884            |  |
| Sulfur                  | 10 max                | ppm         | ASTM D5453/D2622          |  |
|                         |                       |             | JIS K3541-1, -2, -6 or -7 |  |
| Dhosphorus              | 1 may                 | malka       | EN 14107                  |  |
| Phosphorus              | 4 max                 | mg/kg       | ASTM D4951, D3231         |  |
| Alkali metals (Na+K)    | 5 max                 | mg/kg       | EN 14108/14109, EN 14538  |  |
| Alkaline metals (Ca+Mg) | 5 max                 | mg/kg       | EN 14538                  |  |
| Trace Metals            | no addition           |             | ASTM D7111                |  |
|                         |                       |             |                           |  |

- **Corrosion**  $\rightarrow$  metal compatibility
  - Sulfur → compatibility with emission control system
- Phosphorous → could come from fertilizer or natural phospholipid, which affect emission control system
- Group I&II metals → residual metals form deposit. Possible ash formation by Na&K
- Trace elements → no metal or other contaminants

## Test Methods



| Summary of Tes                 | t Method                | s <sup>3</sup>          |                        |       |                                        | Property                                                      | Units  | CEN/ISO                        | ASTM         | JIS     | Other          |
|--------------------------------|-------------------------|-------------------------|------------------------|-------|----------------------------------------|---------------------------------------------------------------|--------|--------------------------------|--------------|---------|----------------|
| (see main text for a           | additional n            | otes)                   |                        |       |                                        | Sulfated Ash                                                  | % m/m  | ISO 3987                       | D874         |         | ABNT NBR 984   |
| Property                       | Units                   | CEN/ISO                 | ASTM                   | JIS   | Other                                  | Carbon Residue:                                               |        |                                |              |         |                |
| Ester content                  | % m/m                   | EN 14103 mod            |                        |       | ABNT NBR 15342                         | <ul> <li>Ramsbottom, on</li> <li>100% distillation</li> </ul> | % m/m  |                                | D4530        |         |                |
| Linolenic Acid Methyl<br>Ester | % m/m                   | EN 14103 mod            |                        |       |                                        | residue                                                       |        |                                | D665         |         |                |
| Polyunsaturated acid           | 04 (                    |                         |                        |       |                                        | Ferrous Corrosion                                             | rating |                                | Procedure A  |         |                |
| double bonds)                  | % m/m                   |                         |                        |       | pren 15779                             | Sulfur                                                        | ppm    | EN 20846/20884                 | D5453/D2622  | K3541-1 | , -2, -6 or -7 |
| Oxidation Stability:           | br                      | prEN 15751 or           |                        |       |                                        | Phosphorus                                                    | mg/kg  | EN 14107                       | D4951, D3231 |         |                |
| Induction Period               |                         | EN 14112 as alternative | e                      |       |                                        | _ Alkali metals (Na, K)                                       | mg/kg  | EN 14108/EN 14109,<br>FN 14538 |              |         |                |
| lodine Number                  | g l <sub>2</sub> /100 g | EN 14111                |                        |       |                                        | Alkalina matala (Ca                                           |        | LN 14550                       |              |         |                |
| Total Acid Number              | mg KOH/g                | ISO 6618                | D664, D974             | K2501 | ABNT NBR 14448                         | Mg)                                                           | mg/kg  | EN 14538                       |              |         |                |
| Methanol                       | % m/m                   | EN 14110                |                        | K2536 | ABNT NBR 15343                         | Trace metals                                                  |        |                                | D7111        |         |                |
| Glycerides                     | % m/m                   | EN 14105                |                        |       |                                        | _                                                             |        |                                |              |         |                |
| Mono-glyceride                 | % m/m                   | EN 14105                | D6584                  |       | ABNT NBR 15342                         | _                                                             |        |                                |              |         |                |
| Di-glyceride                   | % m/m                   | EN 14105                | D6584                  |       | ABNT NBR 15342                         |                                                               |        |                                |              |         |                |
| Tri-glyceride                  | % m/m                   | EN 14105                | D6584                  |       | ABNT NBR 15342                         | _                                                             |        |                                |              |         |                |
| Glycerin (glycerol)            |                         |                         |                        |       |                                        |                                                               |        |                                |              |         |                |
| Free glycerin                  | % m/m                   | EN 14105,<br>EN 14106   | D6584                  |       | ABNT NBR 15341                         | _                                                             |        |                                |              |         |                |
| Total glycerin                 | % m/m                   | EN 14105                | D6584                  |       | ABNT NBR 15344                         | _                                                             |        |                                |              |         |                |
| Density                        | g/ml                    | EN ISO 3675             | D4052                  | K2249 | EN ISO 12185<br>ABNT NBR<br>7148/14065 |                                                               |        |                                |              |         |                |
| Kinematic Viscosity            | mm²/s                   | EN ISO 3104             | D445                   | K2283 | ABNT NBR 10441                         | _                                                             |        |                                |              |         |                |
| Flash Point                    | °C                      | ISO 3679                | D93                    |       |                                        | _                                                             |        |                                |              |         |                |
| Cetane Number                  |                         | ISO 5165                | D613                   | K2280 |                                        | _                                                             |        |                                |              |         |                |
| Water                          | mg/kg                   | EN 12937                |                        |       |                                        |                                                               |        |                                |              |         |                |
| Water and Sediment             | % v/v                   |                         | D2709                  |       |                                        | _                                                             |        |                                |              |         |                |
| Total Contamination            | mg/kg                   | EN 12662                | D2276, D5452,<br>D6217 |       |                                        | _                                                             |        |                                |              |         |                |
| Ash Content                    | % m/m                   | ISO 6245                | D482                   | K2272 |                                        |                                                               |        |                                |              |         |                |

<sup>3</sup> Test methods may be used with B100; consult method to determine if also applicable to blends.





# **ERIA-EAS Biodiesel Standard (EEBS: 2008)**



#### Palm

Jatropha

#### Coconut

#### ut Ra

#### Rapeseed

#### Soybean

### Dr. Shinichi GOTO (WG Leader) Dr. Mitsuharu OGUMA (Sub Leader) National Institute of Advanced Science and Technology (AIST), Japan

### Dr. Nuwong CHOLLACOOP (Sub Leader) National Metal and Materials Technology Center (MTEC), Thailand



### What is ERIA?



- ERIA is a new kind of international organization to conduct policy research and make policy recommendations to promote economic integration in East Asia.
- ERIA will intellectually support the role of the ASEAN Secretariat to give shape to regional policy directed by leaders at the East Asia Summit.
- ERIA will make policy recommendations as a "Center of Excellence" in the region in strong partnership with governments in the region, other related international organizations, research institutes and the business community.

#### Intellectual Contribution for Economic Integration in East Asia





### Membership (Overseas)

#### <u>Australia</u>

Dr. Lesley Dowling & Dr. Daniel Sheedy Fuel and Used Oil Policy Section, Department of Environment and Water Resources

#### <u>China</u>

Prof. Wugao Zhang Shanghai Jiao Tong University

#### <u>India</u>

Dr. Alok Adholeya Director, The Energy and Resources Institute (TERI)

#### <u>Indonesia</u>

Dr. Tatang Hernas Soerawidjaja Chairman, Indonesian Biodiesel Forum/Head, Center for Research on Natural Resource Utilization, Institut Teknologi Bandung

Mr. Soni Solistia Wirawan Head of Institute for Engineering and Technology System Design, Agency for the Assessment and Application of Technology

#### Lao PDR

Mr. Syvang Xayyavong Deputy Director, Renewable Energy Development Division, Institute of Renewable Energy Promotion

#### <u>Malaysia</u>

Mr. Harrison Lau Lik Nang Research Officer, Engineering and Processing Research Div., Malaysia Palm Oil Board (MPOB)

#### New Zealand

Mr. Andrew Saunders Policy Analyst, Fuels & Crown Resources Group, Ministry of Economic Development

#### **Philippines**

Ms. Zenaida Ygnacio Monsada Oil Industry Management Bureau, Department of Energy

#### <u>Singapore</u>

Dr. Rong Yan Institute of Environmental Science and Engineering, Nanyang Technological University

#### <u>South Korea</u>

Dr. Young Jae Lee Leader, Transportation Energy Research Center, Korea Institute of Energy Research

#### Thailand

Ms. Peesamai Jenvanitpanjakul Technical Advisor, Thailand Institute of Scientific and Technological Research (TISTR)

Dr. Nuwong Chollacoop National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Thailand

#### <u>Vietnam</u> Ms. Hoang Thi Tinh Standard Expert, TCVN/TC28/SC5 Biofuels, Vietnam Institute for Standards and Quality

### Dr. Shinichi Goto (WG leader)

National Institute of Advanced Science and Technology (AIST)

#### Mr. Shoichi ICHIKAWA

Representative of Japan Automobile Manufactures Association (JAMA), Toyota Motor Corporation, Japan

#### <u>Dr. Takashi HOSHINO</u>

Representative of Japan Automobile Manufactures Association (JAMA), Isuzu Motors Limited, Japan

### <u>Prof. Koji YAMANE</u>

Representative of Academia, University of Shiga Prefecture, Japan

### <u>Mr. Akio IMAI</u>

Representative of Petroleum Association of Japan (PAJ), Showa Shell Sekiyu K.K., Japan

#### <u>Mr. Takao IKEDA</u>

New and Renewable Energy Group, Strategy and Industry Research Unit, Institute of Energy Economics, Japan

### Prof. Mitsuru KONNO

Representative of Academia, Ibaraki University, Japan

### <u>Dr. Yuji YOSHIMURA</u>

National Institute of Advanced Science and Technology (AIST)

### Dr. Mitsuharu OGUMA

National Institute of Advanced Science and Technology (AIST)

### **Concepts of Harmonized Specification**



### Based on EU's standard (EN14214)

- Cover a whole of factor in BDF
- EU's standard: Focusing Rapeseed oil only

### Consideration of various oils

- Coconut : Viscosity and Flashpoint
- Soybean : lodine number

### Oxidation stability

- Critical impact on metal fuel tanks
- Metal tanks are popular for vehicles in Asia
- Oxidation stability of 10 hours prevented metal tank corrosion in Japanese conformity test

### Polyunsaturated components

- Mainly included in fish oil
- Risk of sludge formation
- Measurement method hasn't developed yet



### Output of the Activity in 2007/2008

### **EAS-ERIA Biodiesel Fuel Benchmark Standard**

| Itoms                                           | Unite    | U.S.            | EU           | Japan          | EAS-ERIA BDF Standard |
|-------------------------------------------------|----------|-----------------|--------------|----------------|-----------------------|
| items                                           | Units    | ASTM D6751-07b  | EN14214:2003 | JIS K2390:2008 | (EEBS):2008           |
| Ester content                                   | mass%    | -               | 96.5 min.    | 96.5 min.      | 96.5 min.             |
| Density                                         | kg/m3    | -               | 860-900      | 860-900        | 860-900               |
| Viscosity                                       | mm2/s    | 1.9-6.0         | 3.50-5.00    | 3.50-5.00      | 2.00-5.00             |
| Flashpoint                                      | deg. C   | 93 min.         | 120 min.     | 120 min.       | 100 min.              |
| Sulfur content                                  | mass%    | 0.0015 max.     | 0.0010 max.  | 0.0010 max.    | 0.0010 max.           |
| Distillation, T90                               | deg. C   | 360 max.        | -            | -              | -                     |
| Carbon residue (100%) or                        | maaa9/   | 0.05 max.       | -            | -              | 0.05 max.             |
| Carbon residue (10%)                            | 11185570 | -               | 0.30 max.    | 0.3 max.       | 0.3 max.              |
| Cetane number                                   |          | 47 min.         | 51.0 min.    | 51.0 min.      | 51.0 min.             |
| Sulfated ash                                    | mass%    | 0.02 max.       | 0.02 max.    | 0.02 max.      | 0.02 max.             |
| Water content                                   | mg/kg    | 0.05[vol%] max. | 500 max.     | 500 max.       | 500 max.              |
| Total contamination                             | mg/kg    | -               | 24 max.      | 24 max.        | 24 max.               |
| Copper corrosion                                |          | No.3            | Class-1      | Class-1        | Class-1               |
| Acid value                                      | mgKOH/g  | 0.50 max.       | 0.50 max.    | 0.50 max.      | 0.50 max.             |
| Oxidation stability                             | hrs.     | 3 min.          | 6.0 min.     | (**)           | 10.0 min. (****)      |
| lodine value                                    |          | -               | 120 max.     | 120 max.       | Reported (***)        |
| Methyl Linolenate                               | mass%    | -               | 12.0 max.    | 12.0 max.      | 12.0 max.             |
| Polyunsaturated FAME (more than 4 double bonds) | mass%    | -               | 1 max.       | N.D.           | N.D. (***)            |
| Methanol content                                | mass%    | 0.2 max. (*)    | 0.20 max.    | 0.20 max.      | 0.20 max.             |
| Monoglyceride content                           | mass%    | -               | 0.80 max.    | 0.80 max.      | 0.80 max.             |
| Diglyceride content                             | mass%    | -               | 0.20 max.    | 0.20 max.      | 0.20 max.             |
| Triglyceride content                            | mass%    | -               | 0.20 max.    | 0.20 max.      | 0.20 max.             |
| Free glycerol content                           | mass%    | 0.020 max.      | 0.02 max.    | 0.02 max.      | 0.02 max.             |
| Total glycerol content                          | mass%    | 0.240 max.      | 0.25 max.    | 0.25 max.      | 0.25 max.             |
| Na+K                                            | mg/kg    | 5 max.          | 5.0 max.     | 5.0 max.       | 5.0 max.              |
| Ca+Mg                                           | mg/kg    | 5 max.          | 5.0 max.     | 5.0 max.       | 5.0 max.              |
| Phosphorous content                             | mg/kg    | 10 max.         | 10.0 max.    | 10.0 max.      | 10.0 max.             |

(\*) 130deg.C of flashpoint is available instead of measuring methanol content (\*\*) Meet diesel oil specification (\*\*\*) Need data check and further discussion (\*\*\*\*) Need more data & discussion from 6 to 10 hrs.







- History
  - ASEAN Automotive Federation (AAF) was first established in 1976, but activities ceased in 1983 (each focus on national auto industry)
  - In 1996 with the implementation of AFTA and its schemes, the ASEAN Automotive Federation was revived as a common platform to work with ASEAN Governments and ASEAN Secretariat towards achieving AFTA.
- Vision
  - "ASEAN with a strong and integrated vehicle and parts & components market supported by globally competitive automotive manufacturing industry".
- Mission
  - "To promote automotive market integration and growth, cooperation and investments in the ASEAN region".
- Goal
  - "To increase ASEAN market share and industry capability in the global automotive business".



#### ASEAN AUTOMOTIVE FEDERATION TECHNICAL COMMITTEES





# PROPOSED AAF SPEC FOR B100 (FAME)

| Items                             | AAF Recommend |                         |                           |
|-----------------------------------|---------------|-------------------------|---------------------------|
| Properties                        | unit          |                         | Priority                  |
| Ester content                     | mass%         | 96.5 min                | **                        |
| Density                           | g/ml          | Report                  | *                         |
| Kinematic Viscosity               | mm2/s         | 2.0 - 5.0               | *                         |
| Flash Point                       | °C            | 100 min                 | *                         |
| Sulfur                            | ppm           | 10 max                  | **                        |
| Carbon Residue 10%                | mass%         | 0.3 max                 | *                         |
| Carbon Residue 100%               | mass%         | 0.05 max                | *                         |
| Cetane Number                     |               | 51 min                  | *                         |
| Sulfated Ash                      | mass%         | 0.02 max                | **                        |
| Ash                               | mass%         |                         |                           |
| Water                             | ppm           | 500 max                 | **                        |
| Total Contamination               | ppm           | 24 max                  | **                        |
| Water and Sediment                | vol%          |                         |                           |
| Copper Corrosion                  |               | 1 max                   | *                         |
| Total Acid Number                 | mgKOH/g       | 0.50 max                | **                        |
| Oxidation Stability               | hrs           | 10 min                  | ***                       |
| lodine Number                     | gl2/100g      | 120 max                 | **                        |
| Linolenic acid methyl ester       | mass%         | 12.0 max                | *                         |
| Polyunsaturated acid methyl ester | mass%         |                         |                           |
| Methanol                          | mass%         | 0.20 max                | *                         |
| Mono glyceride                    | mass%         | 0.80 max                | **                        |
| Di glyceride                      | mass%         | 0.20 max                | **                        |
| Tri glyceride                     | mass%         | 0.20 max                | **                        |
| Free glycerine                    | mass%         | 0.02 max                | **                        |
| Total glycerine                   | mass%         | 0.25 max                | **                        |
| Metals (Na + K)                   | ppm           | 5 max                   | ***                       |
| Metals (Ca + Mg)                  | ppm           | 5 max                   | ***                       |
| Phospourus                        | ppm           | 4 max                   |                           |
| T90                               | ℃             | H brining Force for har | ional selence and recimon |

by Capability 50



## Discussion on how to develop guideline in APEC

