

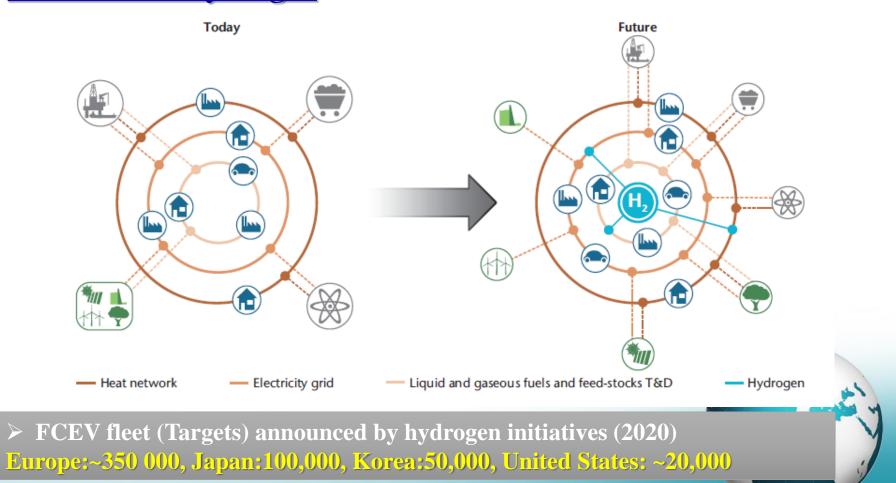
© Tokyo University of Science

Steam based biomass gasification processes for syngas and hydrogen production

October 24, 2017 Tokyo, Japan

Kiyoshi Dowaki*

Department of Industrial Administration, Tokyo University of Science, Japan


E-mail: dowaki@rs.noda.tus.ac.jp*

© Tokyo University of Science

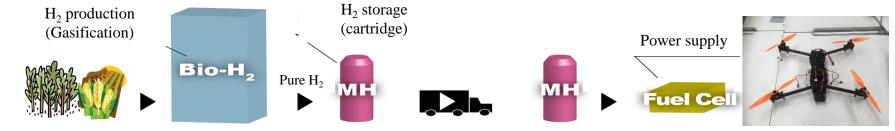
✓ Potential of Hydrogen

Source: Technology Roadmap Hydrogen and Fuel Cells OECD/IEA, 2015 International Energy Agency

© Tokyo University of Science

BLUE Tower II – Third pilot plant (Shibukawa Technology Development Center of JBEC^{*}) *Japan Blue Energy Co. Ltd.

© Tokyo University of Science

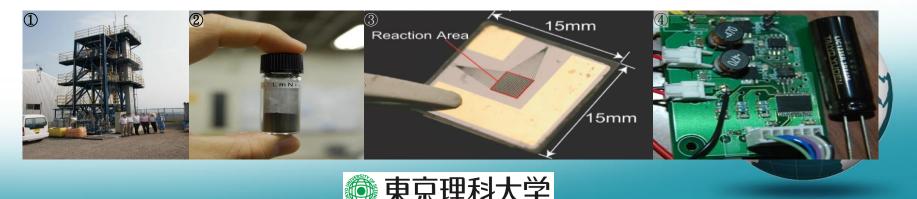

Drone

✓ Our Strategy -R&D of Fuel Cell Drone by Bio-H₂ fuel supply-

Combination of Bio-H₂ production technology and a cell phone
 Expansion of Bio-H₂ application.

: Gasification technology, Gas Cleaning Technology · LCA

- : Removal technology of contaminants in Bio-syngas
- : Small scale PEFC in consideration of CO and H₂S tolerance
- : H_2 storage system (metal hydride) · power converter circuit


Biomass Feedstock

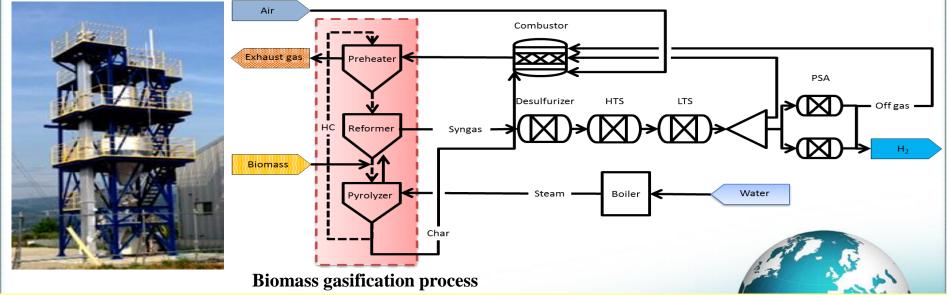
Prof. T. Gunji

Prof. M. Hayase

Dr. N. Katayama

Prof. K. Dowaki (Project leader)

(H₂ supply chain)



© Tokyo University of Science

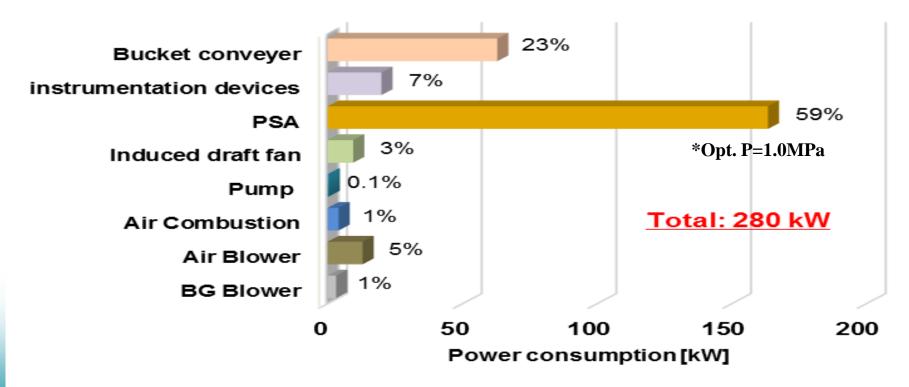
✓ Gasification Technology

Basic contents

- > The gasifier type is the biomass pyrolysis system in a reductive atmosphere.
- > The system has 2 furnaces of pyrolysis+reforming zone and pre-heater.
- → H_2 concentration in syngas would be comparatively high (>40 vol.%).
- > The plant capacity would be the range of 5 to around 70 t/day.

Our tasks in this study

- Confirmation of syngas yields and concentrations due to experiments.
- Confirmation of adsorption performance due to experiments.(CO₂ adsorption /H₂ purification)
- \blacktriangleright Process design of H₂ production system and estimations of production rate and auxiliary power
- Removal of impurities in syngas.
- \blacktriangleright Calculation of Eco-footprint of Bio- H₂ on basis of LCA concept.

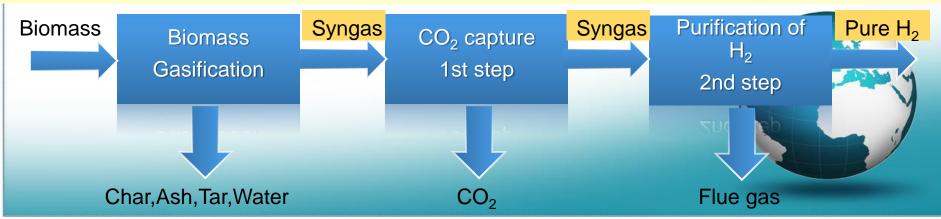


© Tokyo University of Science

Reduction of auxiliary in Bio-H₂ plant

 In the previous LCA study on BT process design in use of the simulator of ASPEN-PLUS, we clarified that the highest impact energy consumption is due to the auxiliary power of PSA.

Reduction of energy consumption by our proposals will be achieved.



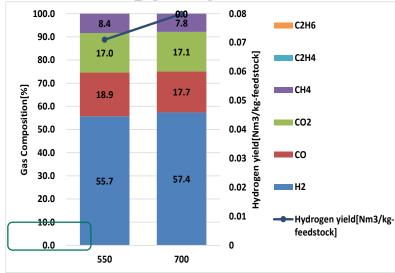
© Tokyo University of Science

<u>Development of 2-step PSA</u>

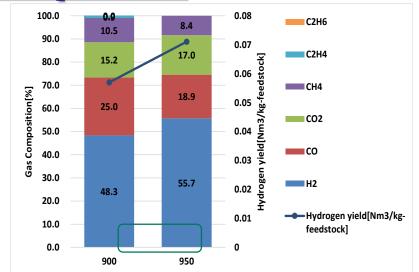
Performance test in use of "2-step PSA apparatus"

- ① Confirmation of gaseous yields and concentrations
- (2) Preparation of bio-syngas
- ③ Execution of adsorption tests
 - -Different species of absorbent (form and pore)
 - -2-step PSA controls (pressure and temperature)
 - -Combination of absorbents
- a. Power saving due to low pressure/low temperature controls and a reduction of amount of a working gas fluid (ex. 0.8MPaG->0.5MPaG,CO₂ removal)
- b. Achievement of CO_2 adsorption and H_2 purification with higher efficiencies

© Tokyo University of Science


✓ Fabrication of apparatus (Gasification Process)

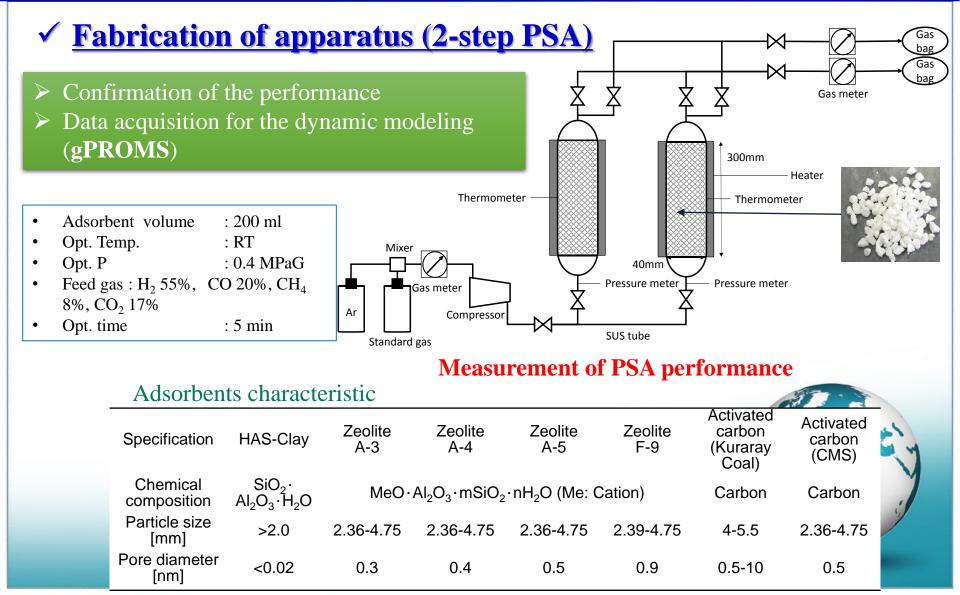
Confirmation of the performance	Proximate Analysis Waste W		J. cedar (Reference)	
 Data acquisition for the static modeling 	Moisture	6.02	wt.%	37.70
(AspenPlus)	Ash	0.35	wt.%	2.20
	Volatiles	82.92	wt.%	83.50
Thermometer Thermorecupie SUS 316Tube Thermocouple	Fixed carbon	10.71	wt.%	14.30
Type N Type N SUS 316 Successful to the full state of the full sta	Ultimate analysis			
Quarts Tube $\varphi OD50$ $L500 mm$ Tube $\varphi OD48.6$ $L500 mm$ H2O $Drain Pot$ Image: H2O $Drain Pot$ $Gas Meter$	Carbon	50.9	wt.%	50.41
	Hydrogen	7.3	wt.%	5.52
Sampling Bag	Nitrogen	0.13	wt.%	0.31
Sampling Box 10L	Oxygen	41.27	wt.%	43.76
	Chlorine	0.01	wt.%	0.01
Kanthal	Sulfur	0.01	wt.%	0.02
SUS basket				
	Measurement	of gaseou	ıs yields	
Ar Mass Flow Meter H2O Flask Tubing Pomp	Note: This appara and reforming zo		ts of pyro	lysis zone


© Tokyo University of Science

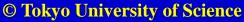
✓ Effects of pyrolysis and reforming temperatures

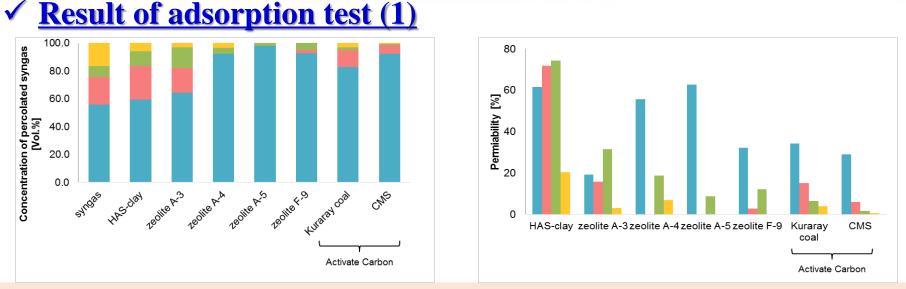
Pyrolysis Temp. [deg.C](Reforming T=950)

Performance (summary)


Reforming Temp [deg.C] (Pyrolysis T=550)

(summary)				
Pyrolysis Temp. [deg.C]	550	550	700	
Reforming Temp. [deg.C]	900	950	950	
Syngas [L/g-feedstock]	1.02	1.10	1.19	
Char [g/g-feedstock]	0.2	0.2	0.2	
Tar [g/g-feedstock]	0.02	0.04	0.008	
Cold gas efficiency [%]	71	68	73	_





© Tokyo University of Science

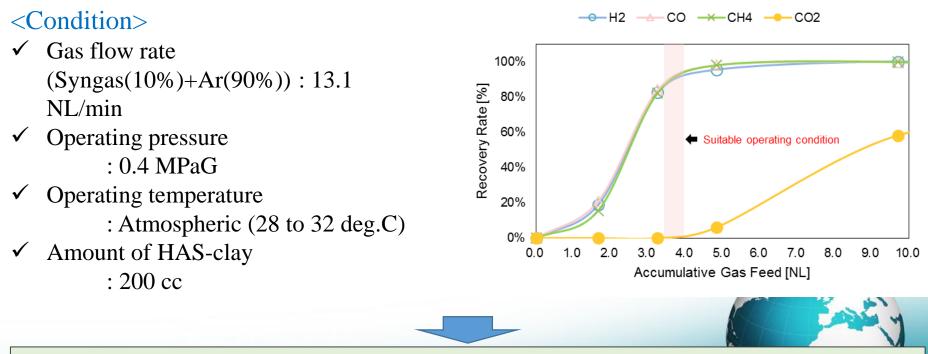
<HAS-clay>

- ✓ Only CO_2 permeability was worse in comparison to the other gas components.
- ✓ That of H_2 was relatively higher.

<Zeolite A-5>

- ✓ The gaseous components percolated in the absorbent were H_2 and CH_4 .
- ✓ H_2 permeability was highest among the candidates.
- ✓ The concentration of H_2 which passed through Zeolite A-5 was 90% or more.

<u>– Our proposals</u>


- At the 1st step, HAS-clay is employed in order to adsorb CO_2 selectivity.
- At the 2^{nd} step, Zeolite A-5 is employed in order to purify H_2 .

© Tokyo University of Science

<u>Result of adsorption test (2)</u>

In order to make only CO_2 component separated from HAS-clay at 1st step, the breakthrough curve was measured.

• H_2 and CO_2 are likely to be separated individually by the combination of HAS-clay at 1st step with Zeolite A-5 at 2nd step, and the gas flow control in consideration of CO_2 retention time.

© Tokyo University of Science

✓ LCA study on Bio-H₂ production

- > Based on our experimental results, we designed the process of target system.
- > We argued the optimal condition in consideration of LCA concept.

<Definition of Eco footprint> H₂ fuel production efficiency[%]

$$\eta_{energy} = \frac{Q_{H_2}}{W_1 + W_2 + H_1(T_1) + H_2(T_2) + Q_{syn} - Q_{og}}$$

CO_2 emission of H_2 fuel [g- $CO_2/MJ-H_2$]

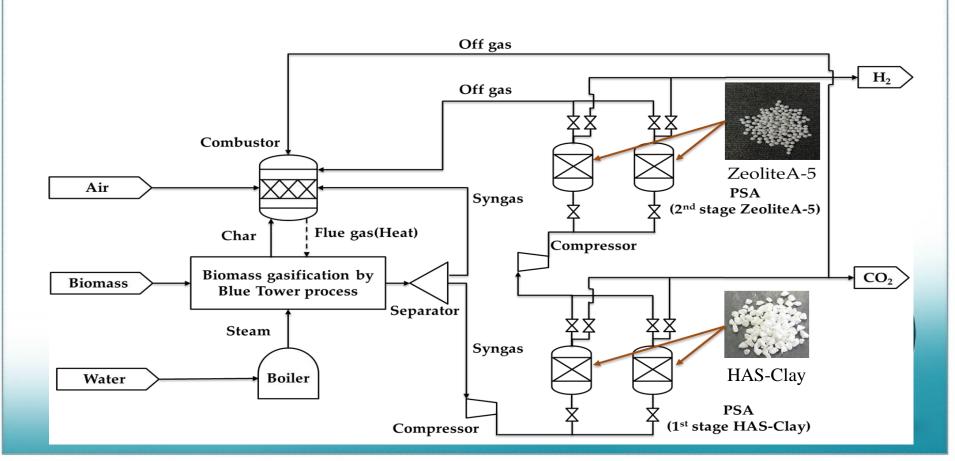
$$FCO_{2} = \frac{C_{1} + C_{2} + C_{aux} - \alpha C_{fs}}{Q_{H_{2}}}$$

The coefficient of α can be set up by the test of CO₂ assimilation in use of model plant (e.g. Arabidopsis thaliana).

 $\begin{array}{l} Q_{H2}:LHV \ of \ H_2 \ [MJ/h] \\ Q_{syn}:LHV \ of \ syngas \ [MJ/h] \\ Q_{og}:LHV \ of \ off \ gas \ [MJ/h] \\ W_1: first \ step \ of \ PSA \ [MJ/h] \\ W_2: second \ step \ of \ PSA \ [MJ/h] \\ H_1(T_1): sensible \ heat \ of \ first \ reactor \ [MJ/h] \\ H_2(T_2): sensible \ heat \ of \ first \ reactor \ [MJ/h] \\ H_2(T_2): sensible \ heat \ of \ first \ reactor \ [MJ/h] \\ C_1:CO_2 \ emission \ of \ first \ reactor \ [g-CO_2/h] \\ C_2:CO_2 \ emission \ of \ second \ reactor \ [g-CO_2/h] \\ C_{aux}: CO_2 \ emission \ of \ auxiliary \ [g-CO_2/h] \\ C_{fs}: \ CO_2 \ emission \ due \ to \ carbon \ neutral \ [g-CO_2/h] \end{array}$

 α :the percentage of adsorbed CO_2 gas [-]

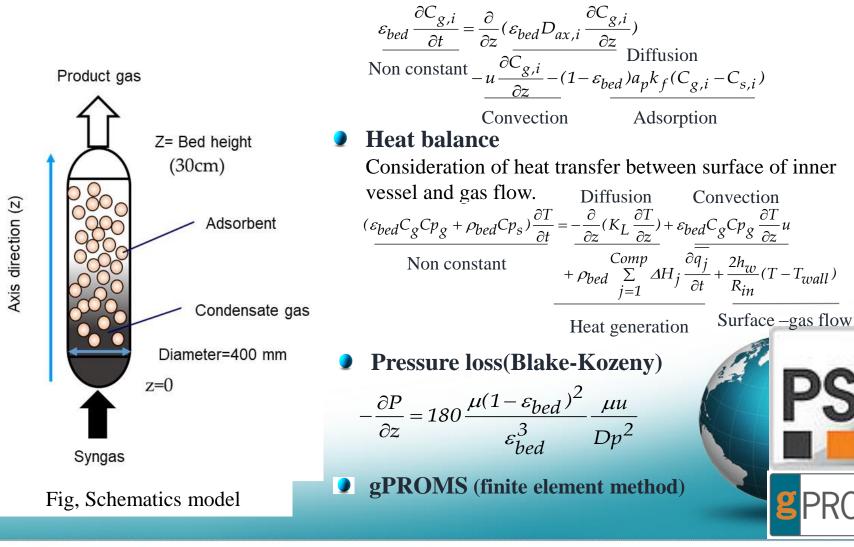
- In the case of the combination of HAS-clay with Zeolite A-5,
- ✓ η_{energy} : 82.8%, FCO₂ : -56.6 g-CO₂/MJ-H₂ (164kW→112kW, Reduction by 31%)
- In the conventional case⁽¹⁾,
- ✓ η_{energy} : 79.0%, FCO₂ : 57.4 g-CO₂/MJ-H₂


(1) Y. Watanabe et al. : J. Life Cycle Assessment, Japan, 9(1), 20-36 (2013)

© Tokyo University of Science

<u>Dynamic Simulation of 2-step PSA</u>

- > 1^{st} stage, CO₂ adsorption
- \geq 2nd stage, H₂ purification

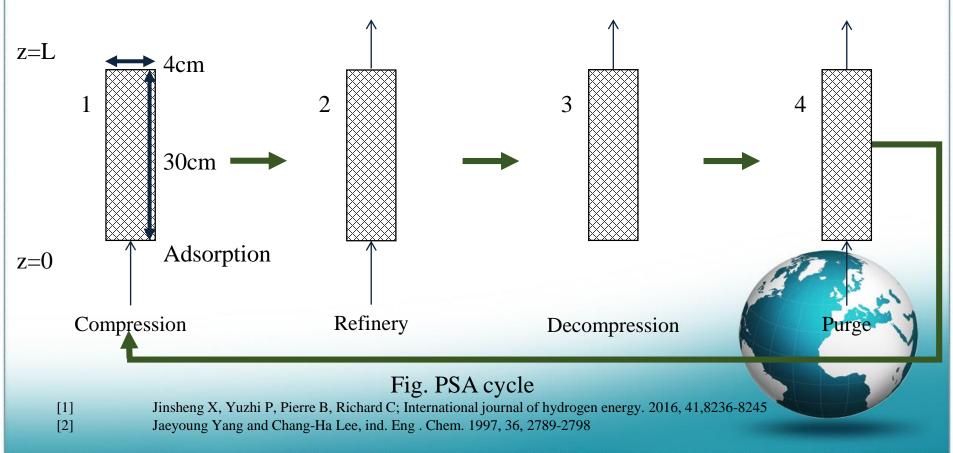


Mass balance

© Tokyo University of Science

PROMS

Modeling

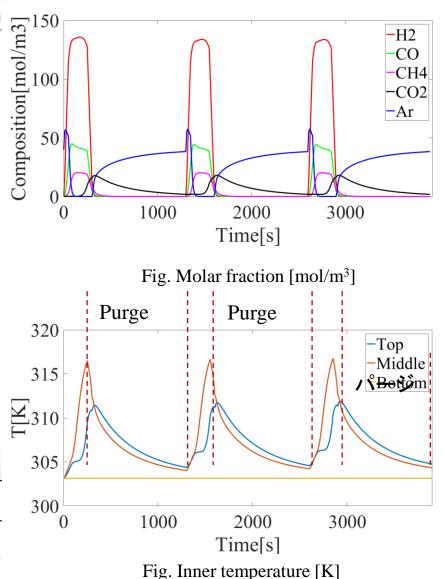

© Tokyo University of Science

Simulation conditions

• PSA Cycle: Compression->Refinery->Decompression->Purge

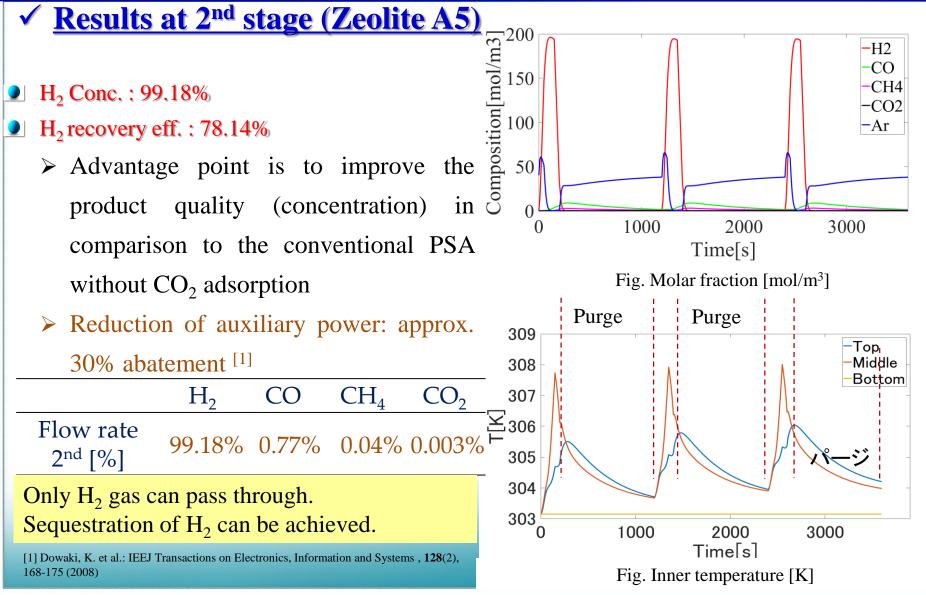
• Number of cycles (in this simulation): 3

Note: Simulation parameters (physical properties) are used by the reference data ^{[1][2]}



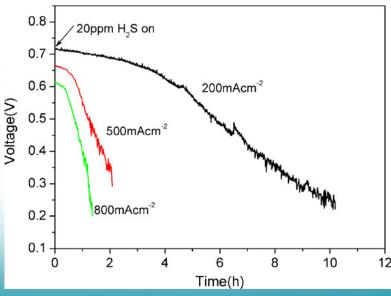
© Tokyo University of Science

<u>Results at 1st stage (HAS-Clay)</u>


- Confirmation of selective CO₂
 adsorption
 - Recovery efficiencies of H_2 ,CO and CH_4 are higher.
- Conc. of CO_2 is high in purge process.
 - CO₂ : 97.47% (adsorption efficiency)
- Temperatures in compression and refinery processes increase.
 - Physical adsorption

	H ₂	СО	CH ₄
Flow rate 1 st [%]	88.30%	88.42%	82.09%

© Tokyo University of Science



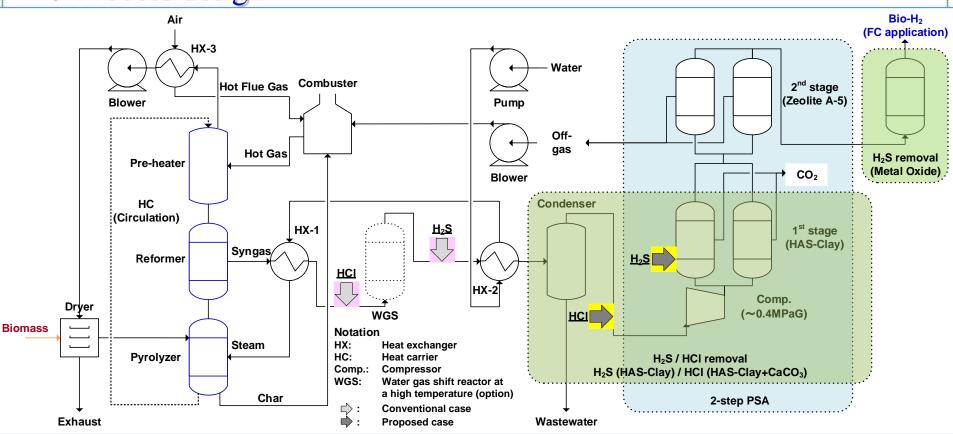
© Tokyo University of Science

✓ Impurities problems on the operation by Bio-H₂?

- \triangleright Contaminations of bio-syngas: HCl, H₂S, NH₃ etc.
- ➢ FC applications→Polymer Electrolyte Fuel Cell (PEFC) (present)
- 1. HCl (Hydrogen chloride)
- > Pt dissolution (Use of catalyst on FC electrodes)
- 2. H₂S (Hydrogen sulfide)
- Performance drop

Fig. Effect of current density on the performance deterioration during exposure to 20 ppm H₂S/H₂. T_{cell} =70 °C, humidification temperatures of the anode and cathode: room temperature and 70 °C.

¹² Source: W. Shi et al. / Journal of Power Sources 164 (2007) 272–277



© Tokyo University of Science

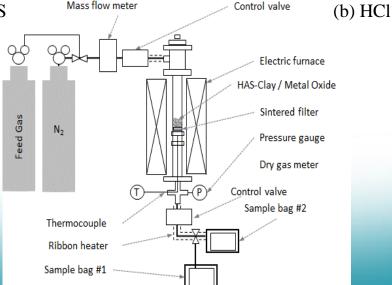
Where shall the impurities be removed?

- Forethought of operation profile in the plant
- Minimum consumption of adsorbents (Economic and Environment)

Process design

© Tokyo University of Science

Estimation of breakthrough curve (Removal Tests)


Adsorbent candidates

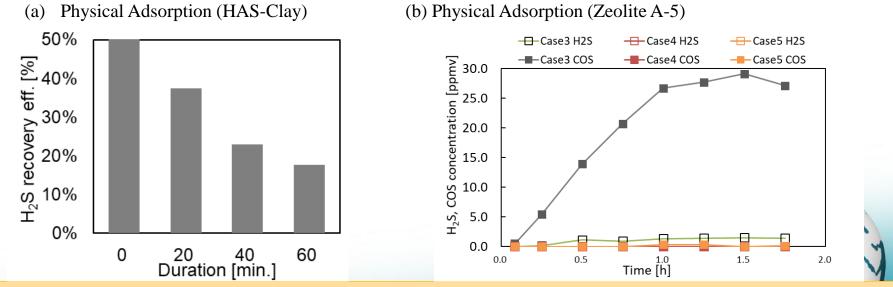
_					
	Specification	HAS-Clay	Zinc oxide	Iron oxide	Calcium carbonate
	Target Impurities	H_2S/HCl	H_2S	$ m H_2S$	HCl
	Chemical composition	${ m SiO_2} \cdot { m Al_2O_3} \cdot { m H_2O}$	ZnO	$\rm Fe_2O_3$	CaCO ₃
	Particle size [mm]	2.2-3.35 (H ₂ S) Powder (HCl)	2.2–3.35	2.2–3.35	$12 \times 10^{-3} - 15 \times 10^{-3}$
	Pore diameter [nm]	< 0.02	-	-	-

Note: HAS-Clay means synthetic substances of hydroxyl aluminum silicate and clay.

(a) H_2S

Mass flow meter

Mass flow Controller Thermocouple Glass wool HAS-Clay + CaCO₃ HCI Ribbon Sintered filter N_2 N_2 heater Exhaust pH meter Deionized water Pressure gauge Stirrer



© Tokyo University of Science

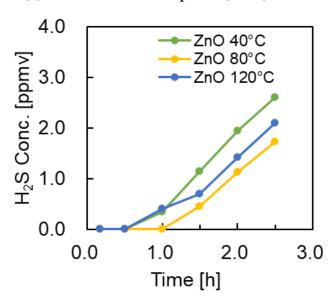
(<u>Absorption performance of HAS-Clay(Results of H₂S (1))</u>

Condition

- 1. H_2S : 30 ppmv, flow rate : 50 Nml/min. , 40 deg.C and 0.4 MPaG, Sample weight : HAS-Clay (2 g), Space velocities (SV) : 2,915 h⁻¹
- 2. H₂S: 100 ppmv, flow rate : 250 Nml/min. , 40, 80, 120 deg.C and atmospheric pressure, Sample weight : ZnO (1.3 g) or Fe₂O₃ (0.95 g), Space velocities (SV) : 8,784 h⁻¹ (constant)

Note:

- ✓ In 2-step PSA (the combination of HAS-Clay and Zeolite A-5), almost H_2S can be eliminated.
- ✓ Prevention of $H_2S+CO_2=COS+H_2O$ because of an absorption of CO_2 by HAS-Clay.
- \checkmark Chemical adsorption is a complementary use.



(a)

Heating Applications of Bio-Pellet Made from Ecological-Hazard Plant in Small and Medium Enterprises to Enhance Utilization of Renewable Energy in the APEC Region

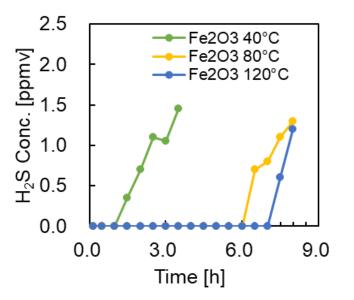
© Tokyo University of Science

Estimation of breakthrough curve (Results of H₂S(2))

Chemical Adsorption (ZnO)

Sulfur capture capacity (Definition)

$$S_{cap} = \frac{t_{BT} \times \dot{V} \times C_{PG} \times At_{as}}{V_{m} \times W_{sorbent}} \times 100$$


- t_{BT} : Breakthrough time [min]
- \dot{V} : Flow rate [L/min]

At_{as}: Atomic weight (=32.07)

 C_{PG} : Conc. of pollutant [ppmv] V_m :Molar volume [L/mol]

W_{sorbent} : Adsorbent weight [g]

(b) Chemical Adsorption (Fe_2O_3)

Table Sulfur capture capacity

Temp. [°C]	ZnO*	$\mathrm{Fe_2O_3}^*$		
40	0.24	0.54		
80	0.31	1.65		
120	0.28	1.69		
*Unite a S/100 a conhant				

*Unit: g-S/100 g-sorbent

© Tokyo University of Science

<u>Absorption performance of HAS-Clay(Results of HCl(1))</u>

Condition

- HCl: 1,160 ppmv, Flow rate: 200 Nml/min, 100-200 deg.C and atmospheric pressure Sample weight : HAS-Clay (0.1 g) and/or CaCO₃(1.0g) Space velocities (SV) : 3,725-32,000 h⁻¹ (see Table)
- 2. Estimation of the effect of blend effect vs. mono-adsorbent.

$CaCO_3 + HCl \rightarrow H_2O \downarrow + CO_2 \downarrow$ (adsorption effect of HAS-Clay)

Note: In general, Ca based adsorption is worked at the temp. of >600 deg.C.

	Specimen		
	#1 #2 #3		
$CaCO_3$ [g]	1.00	0.00	1.00
HAS-Clay [g]	0.00	0.10	0.10
Space Velocity [h ⁻¹]	4,216	32,000	3,725

Table Combination of samples and SVs

Based on the experimental results, the estimation of adsorption effect of blend case (Cl capture) was carried out.

© Tokyo University of Science

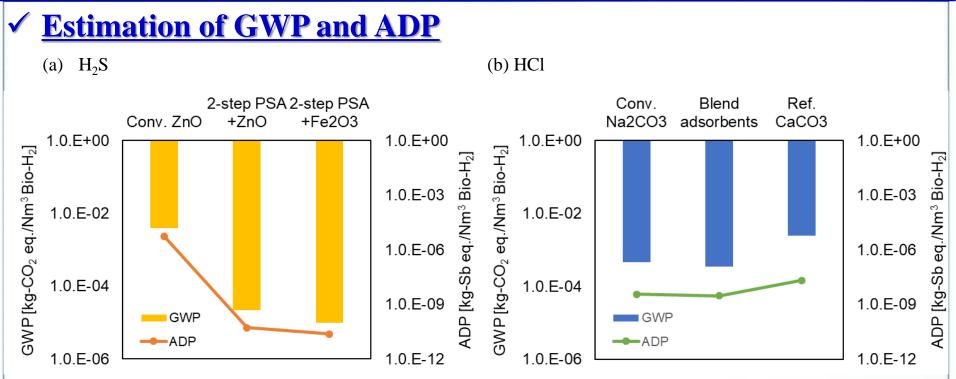
<u>Estimation of breakthrough curve (Results of HCl (2))</u>

© Tokyo University of Science

✓ <u>Impact analysis</u>

Purpose

1. Due to reduction of amount of chemicals (adsorbent), the eco-burden in consideration of LCA is to be visualized.


Conditions

- 1. Functional unit: $1 \text{ Nm}^3 \text{ Bio-H}_2(4\text{N})$
- 2. Estimated Index: Abiotic metal depletion potential (ADP), global warming potential (GWP)
- 3. Software: SimaPro 8.2 software (Impact analysis: the Centrum voor Millieukunde Leiden (CML) method
- 4. Conventional case (H₂S): ZnO (Conv. ZnO) (Capture capacity: 2.81 g-S/100 g-sorbent)
- 5. Initial concentration (H_2S) : 200 ppmv
- 6. Proposed case: 2-step PSA+ZnO (0.24 g-S/100 g-sorbent), PSA+Fe₂O₃ (0.54 g-S/100 gsorbent) *Note: Temp. 40 deg.C
- 7. Conventional case (HCl): Na_2CO_3 (Conv. Na_2CO_3) (Capture capacity: 5.35 g-Cl/100 g-sorbent)
- 8. Proposed case (Blend case): HAS-Clay+CaCO₃ (0.70 g-Cl/100 g-sorbent)
- 9. HAS-Clay is assumed to be regenerable.
- 10. Calculation

Imapct Potential = Inventory Value × Characterisation Factor

[©] Tokyo University of Science

Advantages due to HAS-Clay use

- The eco-indexes of GWP and/or APD was remarkably improved in comparison to the conventional cases (H_2S).
- ➢ In the case of blend of HAS-Clay and CaCO₃, GWP and ADP in comparison to the conventional case were improved by 25.4 % and 19.4 %, respectively (HCl).

© Tokyo University of Science

✓ <u>Conclusions</u>

- In our group, Bio-H₂ production system using the gasification process of Blue Tower is developing.
- ➢ The design policy is based on LCA indexes to obtain the eco-benefit of biomass feedstock.
- ➤ Looking at the entire system, the key technology is the reduction of external energy consumption besides an assurance of steady operation.
- ➢ Also, the technology of impurities removal would be extremely important to match a fuel specification for FC application.
- ➢ In this case, the candidates have to be selected appropriately, since the adsorbents are associated with eco-burden.

© Tokyo University of Science

✓ <u>Conclusions (continued)</u>

- ➢ HAS-Clay which we concerned in this study has good potentials to reduce the auxiliary power and eliminate the impurities in product gas.
- ➤ The characteristic of HAS-Clay, especially, CO₂ adsorption, can promote the elimination of H₂S and HCl, too.
- Simultaneously, the consumption of metal oxide would be reduced due to these characteristics.
- Using the eco-index on basis of LCA (GWP and ADP), the obvious advantages can be obtained.
- ➢ In our future tasks, the adsorption performance of other impurities (e.g. NH₃) will be analyzed.

© Tokyo University of Science

Thank you for your attention!

