

Biomass co-firing experience in NL & Black pellets status update

Michiel Carbo

APEC Workshop on Bio-pellet Production, Handling and Energy Utilisation Tokyo, JP, 24-25 October 2017

www.ecn.nl

Energy research Centre of the **ECN** Netherlands (ECN): 62 years of dynamic development

~500 employees ~ 90 MEUR turnover not-for-profit organisation ~500 reports (2014)

~250 publications and conference papers (2014)

~5 technology licences per year

~20 patents per year

Main biomass R&D areas

- Upgrading: Biomass to commodity fuel
 - Torrefaction: ECN technology commercially available
 - New technology for torrefaction of wet biomass: TORWASH

• Combustion: Biomass boilers and co-firing

- Fuel behavior during combustion & gasification
- Ashes, slags, agglomeration behavior

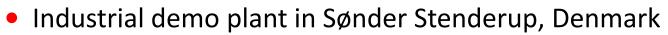
• Gasification: Production of power or fuels

- Gasification technology: MILENA
- Tar removal and product synthesis
- Test equipment and expertise to provide services
- Biorefinery: Technology for a biobased economy
 - Organosolv fractionation into cellulose, hemicellulose, and lignin
 - Conversion of fractions into marketable products

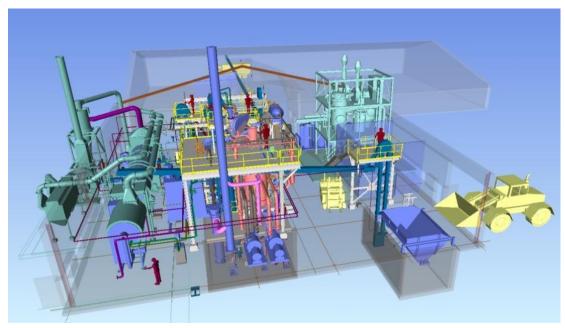
Work and Client examples in *∅* **ECN** biomass upgrading and (co-)firing services

- Technology Due Diligence
 Second opinion for investors → process & product assessment
- Feedstock → find optimum upgrading/conversion technology & clients
- Feedstock for proprietary energy generation → Combine optimum upgradin conversion technology with energy use
- New feedstock for existing installation → identify problems, define solutions

5. Problem in current operation (corrosion/slagging/fouling) → sampling & in-depth analysis → hands-on solutions


ECN in Biomass (co-)firing and Torrefaction

- 20+ years experience in biomass co-firing R&D, identified the potential of torrefaction and played a pioneering role in adapting torrefaction to bioenergy applications since 2002
- ECN's torrefaction technology proven on pilot-scale and demonstration scale; Andritz ready for market introduction
- Contract R&D for industry to assess the torrefaction potential of specific feedstocks, produce test batches and independently assess product quality



ECN 50 kg/h torrefaction pilot-plant

Technology licensed to Andritz

- Operational since 2012
- Capacity 1 ton/hour torrefied pellets
- ECN involved in commissioning, start-up and operation

💓 ECN

Pulp & Paper

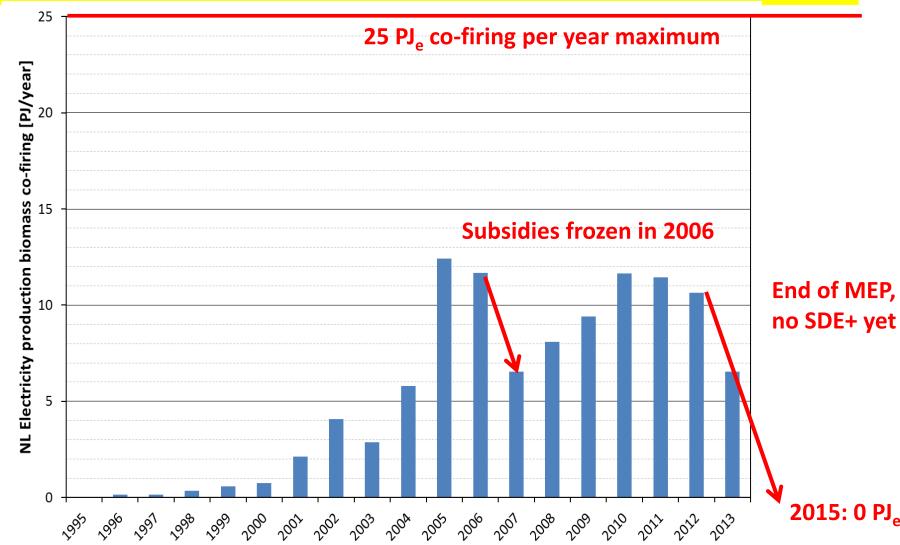
RTZ

Torrefaction demo plant

Dutch biomass co-firing policies

Dutch Energy Agreement for sustainable growth

- Broad support by industry, government, NGO's, unions, etc.
- Reduction in final energy consumption averaging 1.5% annually
- Increase energy generated from renewable sources to 14% in 2020 and 16% in 2023
- Create 15,000 full-time jobs
- Improve competitive position of Dutch companies
- Investment security and innovation support
- Decrease energy costs for households (321 M€) and businesses (266-331 M€)
- Substantial investments between 2013 and 2020: subsidies (13 18 billion euro), infrastructure costs, private investments
- Max. 25 PJ_e biomass co-firing per year (equivalent to 3.5 Mton white wood pellets), with 15% alternative streams
- Closure of older power plants (Amer-8, Borsele, Buggenum, Nijmegen, MPP 1& 2)

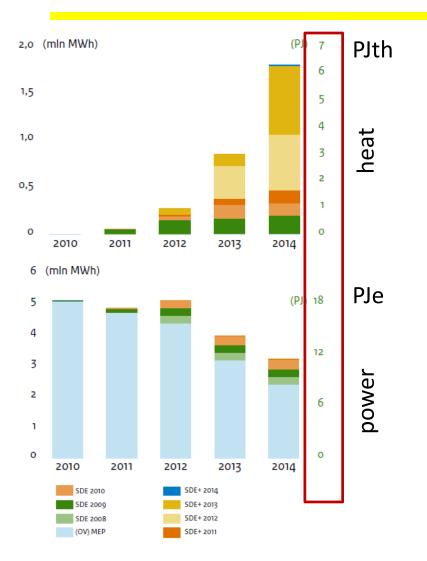

Dutch co-firing incentives

- <2003: RBE \rightarrow tax credit on produced electricity
- 2003-2006: (OV)MEP
 - Project subsidy contracts per kWh (10 years)
- 2008-2010: SDE
 - Feed-in premium with competitive tendering between different renewable energy project proposals; without large scale biomass co-firing, only smaller than 50 MW

• 2010-now: SDE+

- Feed-in premium with competitive tendering between different renewable energy project proposals
- Proposals granted starting with cheapest cost price until total budget is allocated
- Large scale biomass co-firing included in 2015 for duration of 8 years
- Overall 2015 budget for all renewable energy subsidies: 3.5 billion euro
- No co-firing proposals granted in 2015 call

ECN Co-firing experience in the Netherlands


11

Biomass sustainability requirements

- Biomass use must lead to substantial reduction in GHG across value chain in comparison with fossil fuels (min. 70% reduction, max. 56 g CO_{2eq}/MJ)
- Soil quality must be maintained and where possible improved
- Production of raw biomass may not result in destruction of carbon sinks
- Use of biomass may not result in a long-term carbon debt
- Biomass production may not result in Indirect Land Use Change (ILUC)
- Several requirements for sustainable forest management
- Chain of Custody (CoC) must be in place that covers entire chain
- Certification system requirements

Co-firing for E vs biomass to heat in NL in 2014 - 2016

Fast growth in heat generation

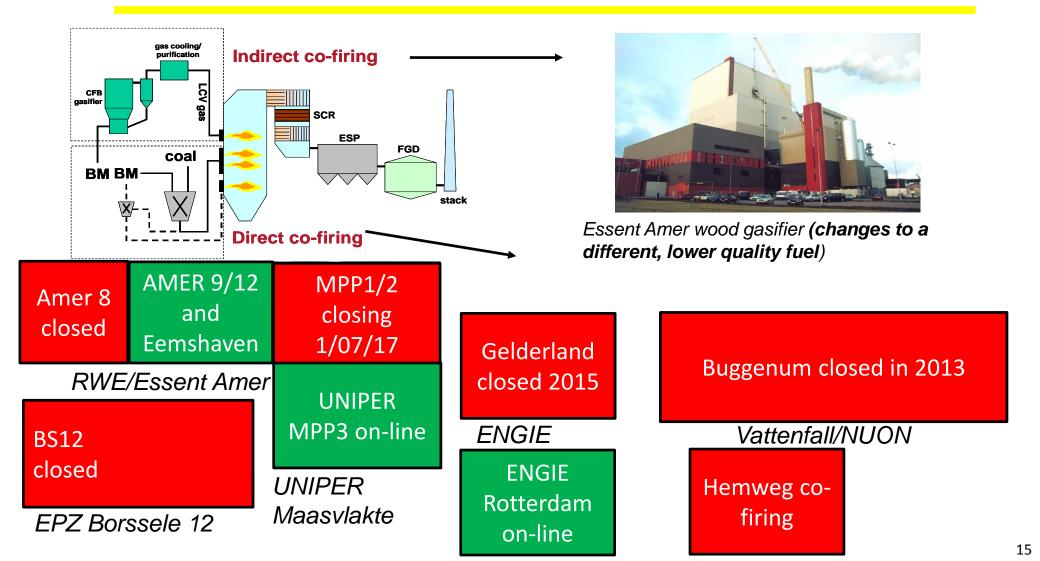
2012 total approx. 18,5 PJ(e+th)

2014 total approx 17,8 PJ(e+th)

2015/2016 additional >100 heat projects, but with a total installed capacity of just **140 MWth (ca 3.6 PJ th)**

As of 01/04/2017: **24.96 PJe under** contract for co-firing!

Bron: Statusdocument Bioenergie 2015, Agentschap NL


ECN

Biomass co-firing in NL beyond 2016 (1)

- As of 01/04/2017: 24.96 PJe under contract for co-firing!
- UNIPER Rotterdam (fka E.On Benelux): USC 1070 MWe/25% co-firing (e/e)
- UNIPER (old units): 2x520MWe/20% co-firing e/e (until July 2017) and later possibly conversion/downrating to 100% heat on renewable residues
- ENGIE (Electrabel) Rotterdam : USC 736 MWe/10% co-firing (e/e)
- RWE/Essent: AMER 9/12 up to 660 MWe 80% co-firing (e/e)
- RWE/Essent: Eemshaven USC 2x736 MWe/10% co-firing (e/e)
- All systems: base fuel wood pellets but with max 15% e/e of "other renewables", including MBM, straw, bark pellets, citrus pulp, cacao

Biomass co-firing in NL beyond 2016 (2)

Dutch lessons learned

- Fluctuations and uncertainties in support schemes do not contribute to continuous biomass co-firing in power plants
- Certainty warrants biomass co-firing by utilities
- Utilities applied for a feed-in premium of 0.068 €/kWh (or 8.5 JPY/kWh) for a total duration of 8 years and 5839 full load equivalent hours per year
- This suggests that biomass co-firing is commercially viable at this premium
- Japanese feed-in tariff and 20 years duration offers a lot of certainty
- Co-firing of white wood pellets likely requires hardware modifications
- Co-firing of torrefied wood pellets is business-as-usual: simply substitute coal

Black Pellets Introduction

The added value of black pellets

- Torrefaction or steam explosion (combined with densification) enables energy-efficient upgrading of biomass into *commodity solid biofuels* with favourable properties in view of logistics and end-use
- Favourable properties include high energy density, better water resistance, slower biodegradation, good grindability, good "flowability", homogenised material properties
- Therefore, cost savings in handling and transport, advanced trading schemes (futures) possible, capex savings at end-user (e.g. outside storage, direct co-milling and co-feeding), higher co-firing percentages and enabling technology for gasificationbased biofuels and biochemicals production
- Applicable to a wide range of lignocellulosic biomass feedstock

Torrefaction

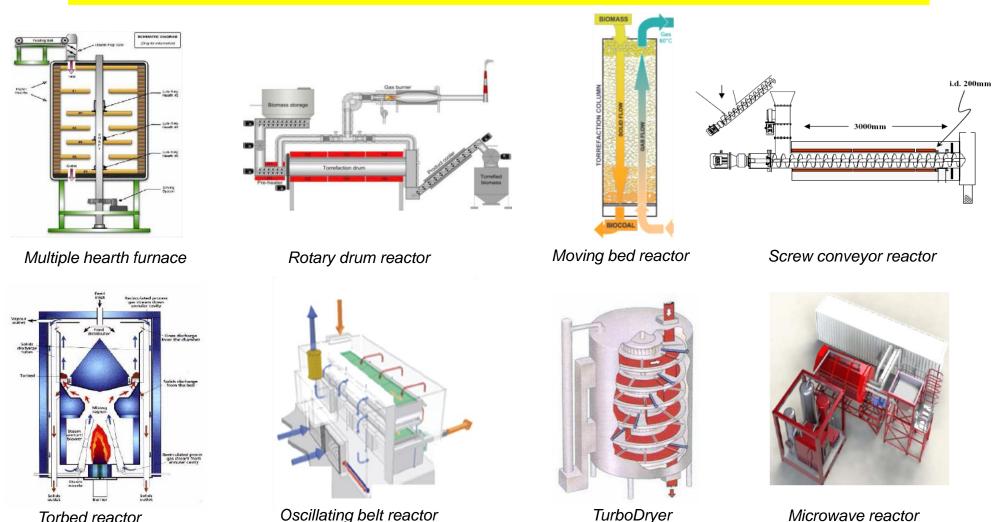
- Pre-drying to moisture content typically below 15%
- Thermal treatment decomposes hemi-cellulose content (250-320 °C)
- Either in absence of oxygen or at limited concentrations
- Volatile components are partially driven off and can be combusted (for pre-drying and further heating)
- Mild torrefaction temperatures do not affect lignin which can be used as a binder during pelleting

- First used around 1000 A.D. to treat coffee beans, nuts, etc. in Africa
- Treatment of wood for construction in the 1980's in Nordic countries
- First plant in France in the late 1980's
- Potential as bioenergy carrier identified early 2000's

Steam explosion

- (Pre-dried) biomass is impregnated with steam (10-35 bar, 180-240 °C)
- Followed by explosive decompression to atmospheric pressure
- Fibres are ruptured to pulp
- Lignin is softened and distributed across pulp surface
- Eases densification (after post-drying)
- Typical higher mass yields than torrefaction, but also more oxygen

- First developments aimed at pulp production in the 1920's
- Later on recognised as pre-treatment/fractionation step in e.g. 2nd generation bioethanol production
- Potential as bioenergy carrier identified early 2000's


Black Pellet Technology Overview

Torrefaction technology

- Many technology developers (>50) due to strong market pull
- Often application of reactor technology proven for other applications (drying, pyrolysis, combustion)
- Good process control is essential for good performance and product quality control (temperature, residence time, mixing, condensables in torrefaction gas)
- High energy efficiency is crucial in view of overall cost and sustainability; overall energy efficiency is strongly dependent on heat integration design
- In general: over 10 demonstration plants and first commercial plants in operation/under construction

Torrefaction technology – many reactor concepts considered

Torbed reactor

Oscillating belt reactor

Microwave reactor

ECN

Torrefaction initiatives (1)

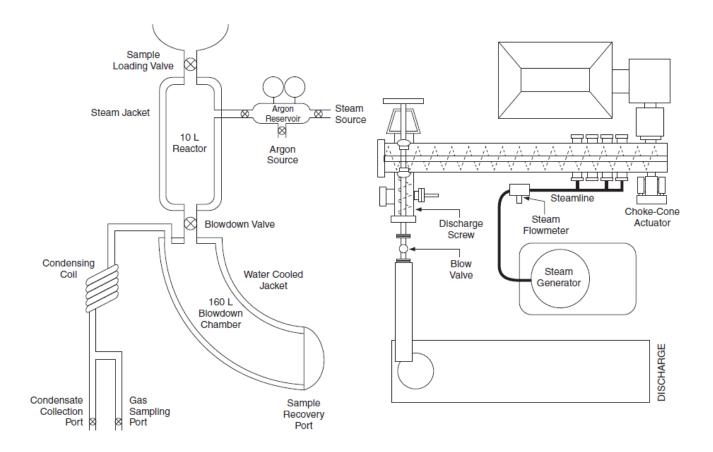
Developer	Technology	Location	Production capacity (ton/a)	Scale	Full Integration	Status
American Biocarbon	Rotary drum (TSI)	White Castle LA (USA)	20,000	Commercial	Unknown	Available
Clean Electricity Generation (UK)	Oscillating belt	Derby (UK)	30,000	Commercial	Yes	Available
Hip Lik Green Energy Ltd.	Unknown	Indonesia	100,000	Commercial	Yes	Relocated from MY
New Biomass Energy/Heet way (USA)	Screw reactor	Quitman MS (USA)	40,000	Commercial	Yes	Available
Black wood/ Topell (NL)	Multistage fluidized bed	Duiven (NL)	60,000	Commercial	Yes	Idle
Arigna Fuels (IR)	Screw conveyor	Roscommon (IR)	20,000	Commercial	Yes	Available
Torr-Coal (NL)	Rotary drum	Dilsen- Stokkem (BE)	30,000	Commercial	Yes	Available

Torrefaction initiatives (2)

Developer	Technology	Location	Production capacity (ton/a)	Scale	Full Integration	Status
Airex (CA)	Cyclonic bed	Bécancour QC (CA)	16,000	Demonstration		Available
Andritz (AT)	Rotary drum	Frohnleiten (AT)	8,000	Demonstration	Yes	New ownership
Andritz (DK)/ECN (NL)	Multiple hearth	Stenderup (DK)	10,000	Demonstration	Yes	Stand by
BioEndev (SE)	Screw reactor	Holmsund (SE)	16,000	Demonstration	Yes	Available
CMI NESA (BE)	Multiple hearth	Seraing (BE)	Undefined	Demonstration		Unknown
Earth Care Products (USA)	Rotary drum	Independence KS (USA)	20,000	Demonstration		Available

Torrefaction initiatives (3)

Developer	Technology	Location	Production capacity (ton/a)	Scale	Full Integration	Status
Grupo Lantec (ES)	Moving bed	Urnieta (ES)	16,000	Demonstration		Unknown
Integro Earth Fuels, LLC (US)	Multiple hearth	Greenville SC (USA)	11,000	Demonstration		Unknown
LMK Energy (FR)	Moving bed	Mazingarbe (FR)	20,000	Demonstration		Unknown
Konza Renewable Fuels (USA)	Rotary drum	Heally KS (USA)	5,000	Demonstration		Unknown
River Basin Energy (USA)	Fluidized bed (aerobic)	Rotterdam (NL)	7,000	Demonstration		In commissioning



Steam explosion

- Perhaps fewer steam explosion developers than for torrefaction
- But 5-10 years of experience at demonstration scale, as opposed to 5 years for torrefaction
- First larger-scale plants established

Steam explosion

Continuous process (Heitz et al., 1990)

Batch process (Turn et al., 1998) Both figures reproduced from (Melin, 2013)

Steam explosion initiatives

Developer	Technology	Location	Production capacity (ton/a)		Full Integration	Status
Zilkha (USA)	Batch	Selma AL (USA)	275,000	Commercial	Yes	Unknown
Arbaflame (NO)	Batch	Kongsvinger (NO)	40,000	Commercial	Yes	Available

Mapping black pellets characteristics

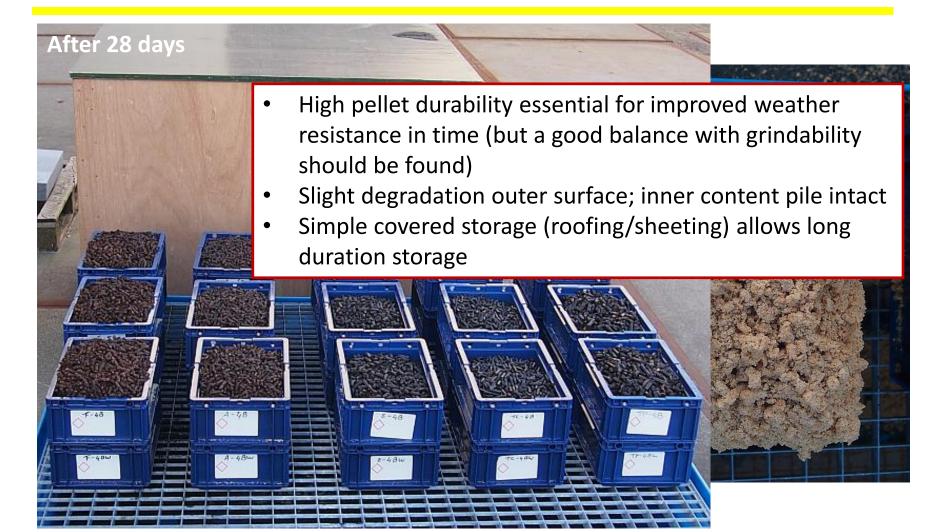
Black pellet properties in perspective

	Wood chips	Wood pellets	Torrefied wood pellets	Steam expl. pellets	Charcoal	Coal
Moisture content (wt%)	30 – 55	7 – 10	1-5	2 – 6	1-5	10 – 15
LHV (MJ/kg db)	7 – 12	15 – 17	18 – 24	18.5 – 20.5	30 – 32	23 – 28
Volatile matter (wt% db)	75 – 85	75 – 85	55 – 80	72	10 – 12	15 – 30
Fixed carbon (wt% db)	16 – 25	16 – 25	20 – 40	ND	85 – 87	50 – 55
Bulk density (kg/l)	0.20 - 0.30	0.55 – 0.65	0.65 – 0.75	0.73-0.75	0.18 - 0.24	0.80 - 0.85
Vol. energy dens. (GJ/m ³)	1.4 - 3.6	8 - 11	12 – 19	~15	5.4 – 7.7	18 – 24
Hygroscopic properties	Hydrophilic	Hydrophilic	(Moderately) Hydrophobic	Hydrophobic	Hydrophobic	Hydrophobic
Biological degradation	Fast	Moderate	Slow	Slow	None	None
Milling requirements	Special	Special	Standard	Standard	Standard	Standard
Product consistency	Limited	High	High	High	High	High
Transport cost	High	Medium	Low	Low	Medium	Low

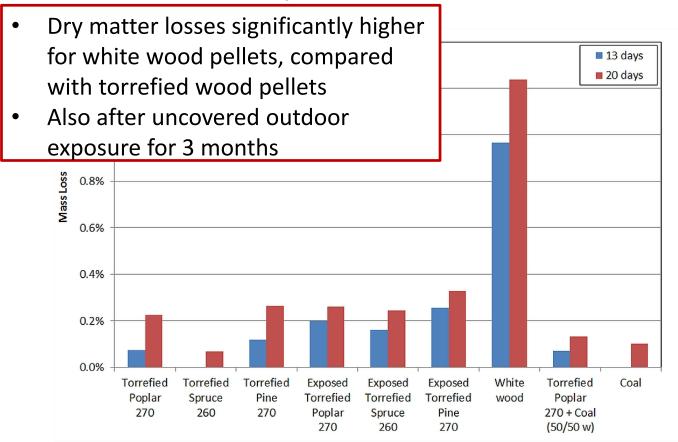
Abbreviations:

db = dry basis LHV =Lower Heating Value

sources: ECN (table, fig.1, 3), Pixelio (fig. 2, 6), Valmet (fig. 4), OFI (fig. 5), ISO/TC 238 WG2 (table)



Small-scale outdoor storage



32

Biological degradation

Pellets stored 20 days at 20 °C at 95% relative humidity

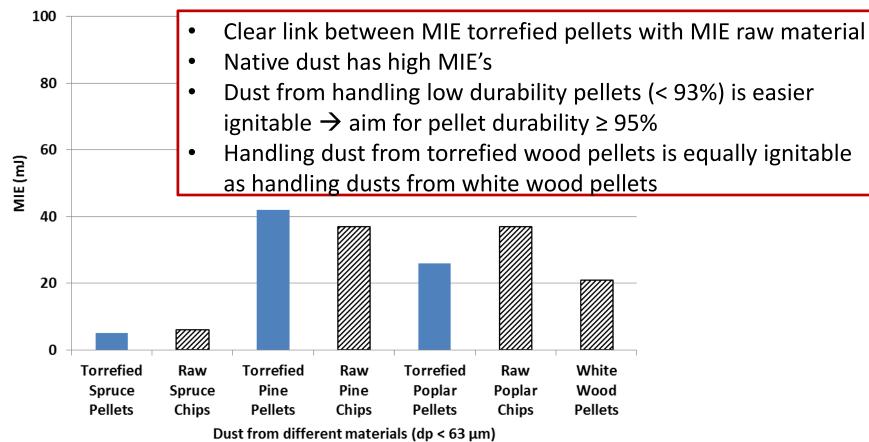
Source: Carbo et al. "Fuel pre-processing, pre-treatment and storage for co-firing of biomass and coal" in "Fuel Flexible Energy Generation" ed. J. Oakey, 2015

Durability and explosivity

• Durability (EN 15210)

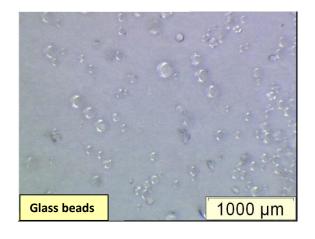
- Torrefied wood pellets typically 96.5-98.5%
- Steam explosion pellets sometimes > 99%

• Minimum ignition energy

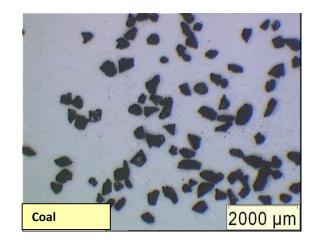

- Pellets were pulverised using disc impaction mill to replicate commercial roller mill
- Fraction below 63 μm used in accordance with EN 13821
- Torrefied wood pellets have MIE's within 30-100 mJ range, both with and without inductance

Minimum Ignition Energy (MIE)

• Pulverised torrefied pellets vs. pulverised raw biomass chips (ind. off)

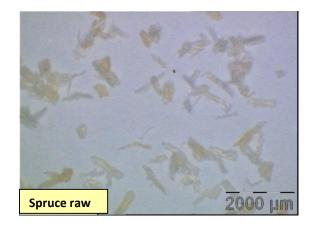


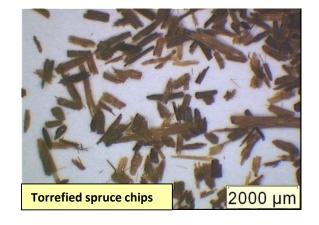
Source: Carbo et al. "Fuel pre-processing, pre-treatment and storage for co-firing of biomass and coal" in "Fuel Flexible Energy Generation" ed. J. Oakey, 2015



Fuel morphology after milling (1)

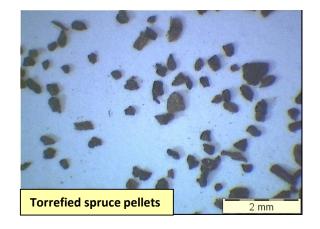
• Glass beads:

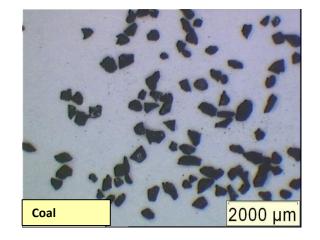

• Coal:



Fuel morphology after milling (2)

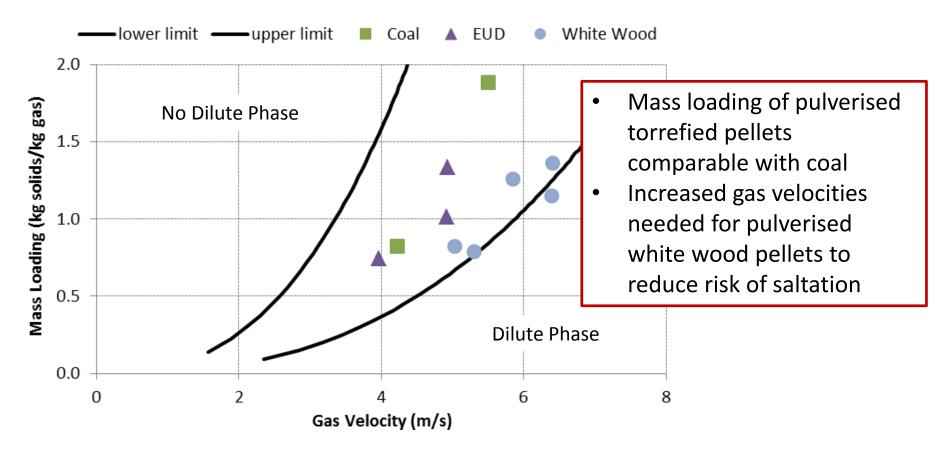
• Raw spruce:


• Torrefied spruce chips:



Fuel morphology after milling (3)

- Torrefied spruce pellets Andritz/ECN demo:
- Particle "sphericity" pulverised torrefied wood pellets comparable to pulverised coal


Pneumatic lean-phase transport (1)

- Fluidization tests to assess flowability
- Bulk densities pulverised torrefied pellets typically between 450-600 kg/m³
- Bulk densities between 550-600 kg/m³ display fluidization behavior similar to coal
- Limited de-rating for pulverised torrefied wood pellets compared to pulverised white wood pellets
- Setup used to determine solids loading/entrainment during dense/lean phase feeding

Pneumatic lean-phase transport (2)

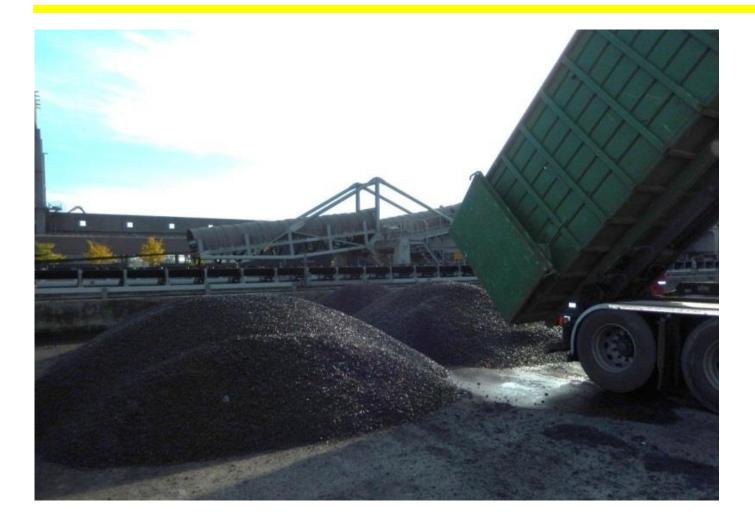
Lower limit: saltation velocity coal; Upper limit: 1.6x saltation velocity coal EUD: Torrefied eucalyptus pellets

Relatively low velocities in lab-scale setup result from tube diameter

Experience with black pellets at industrial scale

NUON/Vattenfall Buggenum experience*

- Maximum 70% co-gasification on energy basis achieved at 90% nominal load without major modifications
- 1200 tons of torrefied pellets during 24 hours trial
- Observations:
 - Relatively low durability led to significant dust formation
 - Low durability disadvantageous during outdoor storage
 - Low Minimum Ignition Energy (MIE)
- Also 5000 tons of steam explosion pellets tested (at lower shares)
- ECN conducted lab-scale test programme to characterise pellets and provided consultancy to mitigate risks during commercial operation
- * Source: N. Padban, Central European Biomass Conference, Jan '14, Graz



RWE/Essent AMER-9 experience*

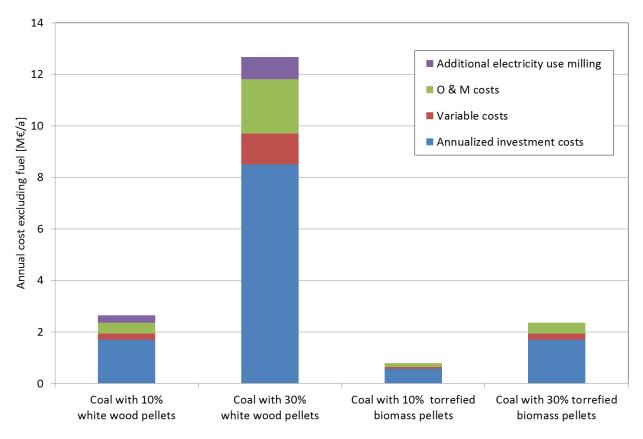
- Consortium of Blackwood, RWE, Vattenfall, ENGIE and ECN as part of Dutch TKI Pre-treatment Project
- Maximum 25 wt% co-milling on weight basis; 5 wt% co-firing
- 2300 tons of Blackwood Technology (Topell) torrefied pellets during November & December '13
- Observations:
 - No significant issues
- ECN conducted lab-scale characterisation of pellets and provided consultancy to mitigate risks during commercial operation
- * Source: Press release Topell/Essent, Feb '14

RWE/Essent AMER-9 experience

DONG Studstrup-3 experience

- Two units with total capacity of 714 MW_e and 986 MW_{th}
- Dedicated milling on MPS roller mill adapted for either coal or white pellets
- 200 tons of Andritz/ECN torrefied spruce pellets during 8 hours trial
- Co-firing share: 33 wt%
- Observations:
 - No dust formation during unloading
 - Sufficiently high durability; no issues with dust formation in chain conveyors
 - Normal Minimum Ignition Energy (MIE)
- ECN conducted lab-scale characterisation of pellets

DONG Studstrup-3 experience



Black pellets costs

Black pellets end use economics

 Annual costs excluding fuel costs white wood pellets vs. black pellets in different co-firing scenarios:

- -400 MW_{e}
- 10 and 30% co-firing (e-basis)
- 6,000 operating hours
- Annuity: 14%
- Economic lifetime: 10 years

Purchasing power

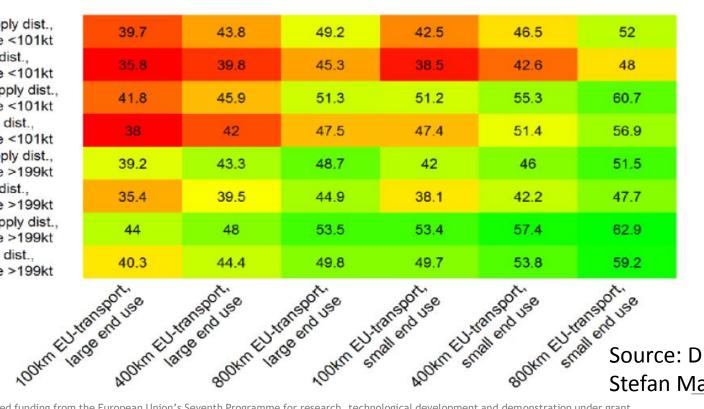
Black pellets particularly interesting to establish increased co-firing ratios at power plants without co-firing infrastructure (or with limited current shares)

• White wood pellet price of 150 €/ton or 30 €/MWh

		10% co-firing	30% co-firing
Annual cost difference: white wood pellets minus torrefied wood pellets	M€/y	1.86	10.31
Pellets used	PJ/y	2.16	6.48
Acceptable price difference for	€/GJ	0.86	1.59
torrefied wood pellets	(€/MWh)	(3.10)	(5.72)
Case 1: price difference at higher rate of	€/GJ	1.08	2.02
return (12% → 15%)	(€/MWh)	(3.89)	(7.27)
Case 2: price difference at reduction of	€/GJ	1.24	2.34
economic lifetime from 10 to 5 years	(€/MWh)	(4.46)	(8.42)

Production and logistic cost black pellets

- Both torrefied and steam explosion pellets display increased volumetric energy content (read: 30-40% more energy per barge)
- Recent studies indicate that production costs are 10-15% higher for black pellets compared to white pellets (VTT/Pöyry, 2014 and FutureMetrics LLC, 2014)
- The FutureMetrics LLC white paper (2014) states:
 - Provided black pellets are waterproof the net benefit of using torrefied and steam explosion pellets over white wood pellets amounts 1.41 and 0.81 USD/GJ, respectively
 - In case dry storage is needed the net benefit of using torrefied pellets over white wood pellets still amounts 0.50 USD/GJ
- Slightly higher production costs for black pellets pay off during logistic chain as well as end use


Value chains: Selected results

Color Key

Cost differences for white pellets Euro/MWh 2 -4 -2 0 4

Average costs (number in the boxes, Euro2013/MWh) for torrefied pellets based on saw dust for selected biomass-to-end-use chain constellations

US/CA, low supply dist., Pellet plant size <101kt EU, low supply dist., Pellet plant size <101kt US/CA, high supply dist., Pellet plant size <101kt EU, high supply dist., Pellet plant size <101kt US/CA, low supply dist., Pellet plant size >199kt EU, low supply dist., Pellet plant size >199kt US/CA, high supply dist., Pellet plant size >199kt EU, high supply dist., Pellet plant size >199kt

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement n° 282826

Source: DBFZ,

Stefan Majer

Black pellet market development

- First large-scale (capacity > 100,000 ton per year) black pellet plants are operational or under construction
- Total global production capacity is not large enough to call it a market
- Black pellet technologies are ready for broad commercial market introduction and the basic drivers to use these pellets are still in place
- However, several factors slowed down this introduction:
 - European utility sector is facing difficult times co-firing perhaps not the best launching end-user market (also in view of scale) – smaller-scale industrial or district heat perhaps a better option?
 - It takes time and effort to build end-user confidence
 - Instead of yielding immediately the ideal feedstock, black pellet technology development had to follow a learning curve, in parallel with white wood pellets
 - Biomass in general is under debate and opinions on biomass use are subject to change

Upgrading of herbaceous biomass

Biomass feedstocks for thermal conversion

wood

(agricultural) residues

energy corps

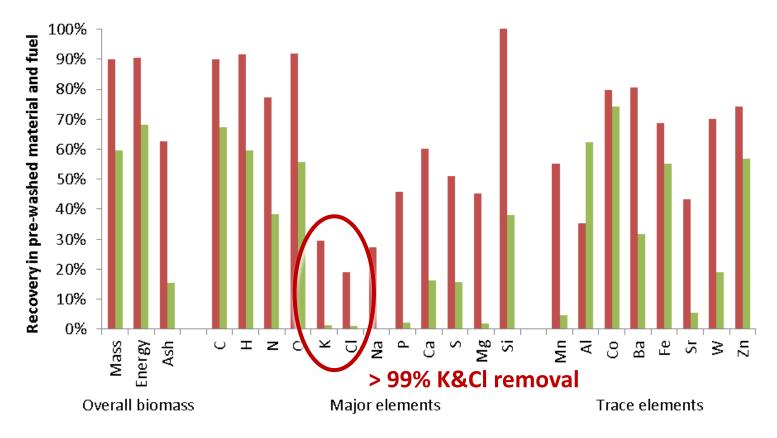
aquatic biomass

Combination of washing and torrefaction

- Torrefaction + Washing = TORWASH
 - upgrades low-grade feedstock into a commodity feedstock
- Combines advantages and eliminates disadvantages
 - Torrefaction \rightarrow brittle structure
 - Salt removal \rightarrow eases thermal conversion
 - Mechanical dewatering \rightarrow higher efficiency
- Aim: maximum energy content and low mineral content in the solid phase
- Product: high value fuel as powder, pellets or briquettes

• By-product: biogas from fermentation of liquid residue

ECN TORWASH Example: Arundo Donax (1)



Arundo Donax/Giant Reed Chopped Arundo Donax/Giant Reed Chopped and TORWASHed Arundo Donax/Giant Reed Chopped, TORWASHed and pelletised

TORWASH Example: Arundo Donax (2)

Presence of mass, energy, ash content and elements as function of feedstock, after pre-wash (red) and TORWASH (green)

TORWASH Example: Arundo Donax (3)

Parameter	Unit	EN plus A1	Wood pellets	Reed raw	Reed torwashed
Additives	wt% ar	0	none	none	none
Water	wt% ar	≤ 10%	8.3%	variable	7%
Bulk density	kg/m ³	≥ 600	636	-	ND
NCV	GJ/ton ar	≥ 16.5	18.6	17.9	20.6
ash	wt% DM	≤ 0.7%	0.3%	2.3%	0.6%
Cl	wt% DM	≤ 0.020%	0.012%	0.227%	0.005%
К	mg/kg DM		380	4924	116

- TORWASHed Giant Reed pellets comply with stringent white wood pellets standard
- Completion of pilot installation foreseen 2017

Future developments

- Torrefaction and steam explosion pellets produced at scale, and end use validated in industrial applications
- Gradually more commercial-scale black pellet plants will come online
- Mature black pellet technology developers are actively pursuing tangible projects
- Besides co-firing where black pellets displace fossil fuels, alternative outlets for black pellets will gain maturity where black pellets will displace white wood pellets
- Medium-term developments will probably be directed to alternative feedstocks:
 - Agricultural residues (e.g., straw, bagasse, palm oil residues)
 - Paper-plastic fractions and other "waste" streams

Thank you for your attention

Michiel Carbo Innovation Manager Biomass Upgrading Biomass & Energy Efficiency

 T +31 88 515 47 92
 Westerduinweg 3, 1755 LE PETTEN

 F +31 88 515 84 88
 P.O. Box 1, 1755 ZG PETTEN

 The Netherlands
 www.ecn.nl