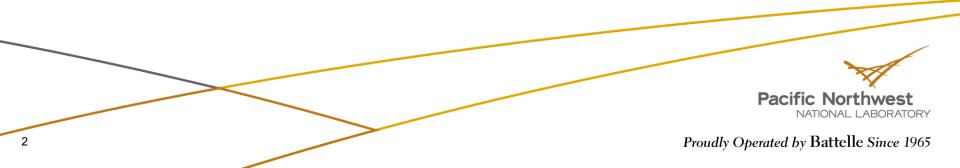
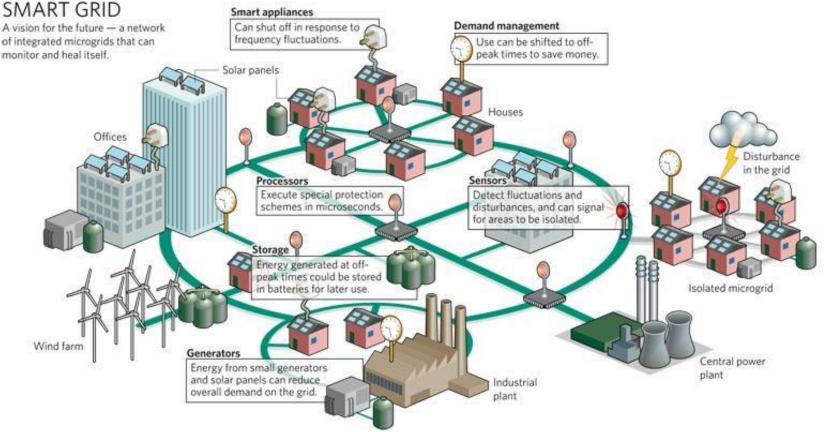
Applications of Modern Microgrids for Off Grid Electrification

Cary Bloyd Senior Staff Scientist Electricity Infrastructure & Buildings Division Pacific Northwest National Laboratory Richland, Washington, USA



Presentation Overview


U.S. DOE Grid Modernization Program

Alaska Microgrid Partnership

ISGAN Award of Excellence 2019

U.S. Vision: Grid Modernization

Picture courtesy of: Smart Grid 2030

Smart grid technologies support the goals of the Grid Modernization Initiative*

- Greater resilience to hazards of all type
- Improved reliability for everyday operations
- Enhanced security from an increasing and evolving number of threats
- Additional affordability to maintain our economic prosperity
- Superior flexibility to respond to the variability and uncertainty of conditions at one or more timescales, including a range of energy futures
- Increased sustainability through additional clean energy and energy-efficient resources

* Started in 2016 with a \$220 million investment over 3 years

Pacific Northwest NATIONAL LABORATORY

The Grid Modernization Program's research is based on a Multiyear Program Plan*

- Devices and Integrated Systems
- Sensing and Measurements
- System Operations, Power Flow, and Control
- Design and Planning Tools
- Security and Resilience
- Institutional Support

*https://www.energy.gov/sites/prod/files/2016/01/f28/Grid%20Modernizat ion%20Multi-Year%20Program%20Plan.pdf

*https://www.energy.gov/oe/articles/grid-modernization-initiative-gmipeer-review-be-held-september-4-7-2018

Pacific NATIONAL LABORATORY

Alaska Microgrid Partnership (AMP)

- Alaska has approximately
 200 isolated microgrid
 systems
- Populations range from 60 to 6000
- The project will create a development pathway for islanded microgrids which will reduce imported energy by at least 50%

Three isolated communities were profiled in the Alaska Microgrid Partnership

- Chefornak Mini-grid Business Case
 - https://www.pnnl.gov/publications/abstracts.asp?report=264431
- Chefornak Energy Configuration Options
 - https://www.nrel.gov/docs/fy18osti/70579.pdf
- Shungnak Mini-grid Business Case
 - https://www.pnnl.gov/publications/abstracts.asp?report=264439
- Shungnak Energy Analysis

7

- <u>https://akenergygateway.alaska.edu/media/AMP/Shungnak%20Technical%</u> <u>20Capacity/Shugnak_Energy_Analysis_Report_Final.pdf</u>
- Kokhanok Mini-grid Business Case
 - https://www.pnnl.gov/publications/abstracts.asp?report=264443
- Kokhanok Energy Retrofit Analysis

https://www.nrel.gov/docs/fy18osti/70575.pdf

Pacific NATIONAL LABORATORY

Chefornak Mini-grid Business Case

- Population: 440
- Current electric generation system
 - 2 x 371 + 1 x 179 diesel plants
 - 1,597,000 kWh/yr (Avg. load: 180 KW)
- Proposed system
 - 800 kW wind turbines
 - 650 kW of electric thermal stoves for energy storage
 - 300 kW battery storage
- Results
 - Cost of electricity could decline from \$0.407/kWh to \$0.308/kWh
 - Fuel consumption could be reduced by 80% (103,000 gal)

Pacific Nort

Kokhanok Mini-grid Business Case

Population: 152

Current electric generation system

1x 60kW, 1x 115 kW, 1x 160 kW, 1x 117
 kW diesel plants with total capacity of 452 kW
 426,248 kWh/yr (Avg. load: 180 KW)

Proposed system

- 2 Vestas 17 (90 kW) wind turbines
- 125 kW of electric thermal stoves for energy storage
- 120 kW battery storage

Results

- Cost of electricity could decline from \$0.69/kWh to \$0.39/kWh
- Fuel consumption could be reduced by 69% (22,000 gal)

Pacific Northwest

Shungnak Mini-grid Business Case

Population: 299

- Current electric generation system
 - 1x 202 kW, 1x 350 kW, 1x 365 kW, 1x 400 kW diesel plants with total capacity of 1317 kW
 - 1,747,196 kWh/yr (Avg. load: 181 KW)
- Proposed system
 - 500 kW wind turbine
 - 46 kW of electric thermal stoves for energy storage
 - 100 kW solar photovoltaics
- Results
 - Cost of electricity could decline from \$0.632/kWh to \$0.548/kWh
 - Fuel consumption could be reduced by 74% (96,000 gal)

Pacific Northwest

Clean Energy Ministerial International Smart Grid Action Network

Award Title: ISGAN Award of Excellence

- AwardRecognize excellence in innovation,ExcellencePurpose:integration, and transformation of smart gridsystems
- Theme:Topic or theme varies by year;each year's award is focused on one theme

AwardProjectsRecipient(s):(i.e., not individuals or individual institutions)

Number of
Awards:One or more, depending on caliber of
nominations and jury's preferences

Pacific Northwest NATIONAL LABORATORY

Award of

Past ISGAN Award Winners*

2014 Consumer Engagement & Empowerment

- Winner: 'SmartView' AMI pilot project from Entergy New Orleans
- 2015: Smart Grids for Renewable Energy Integration
 - Winner: GRID4EU Large-Scale Demonstration Of European Smart Distribution Networks

ÉlectricitéRéseau Distribution France (ERDF) (Germany, Sweden, Spain, Italy, Czech Republic, France)

*http://www.iea-isgan.org/awards/

Pacific Northwest NATIONAL LABORATORY

Past ISGAN Award Winners* (2)

- 2016 Smart Grids for Reliable Electricity Service
 - Winner: CenterPoint Energy Smart Grid (USA)
- 2018: Smart Grids for Flexibility
 - Winner: Sustainable Energy's Coordinating Power Control (Sweden)

*http://www.iea-isgan.org/awards/

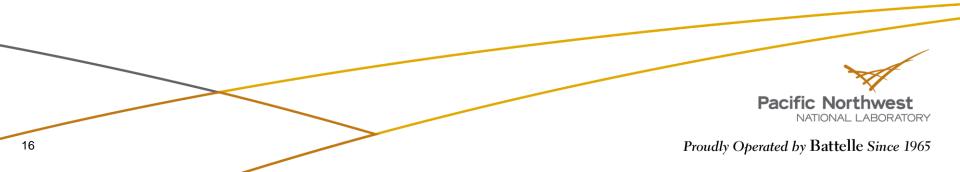
Pacific Northwest NATIONAL LABORATORY

2019 Award Theme has just been announced

Recognizing the critical importance and the role of smart grids sustaining a reliable and resilient grid through integration of energy systems, ISGAN has chosen as the them of the 2019 Award of Excellence:

Smart Grids for Local Integrated Energy Systems (Smart Microgrids)

Submission Deadline: 15 November 2018


ISGAN Eligible Projects

- Eligible projects include pilot, demonstration, and deployment projects
- Please see the 'Official Rules' of the ISGAN Award of Excellence and detailed 'Submission Forms' for more information
- The international jury panel will select winning projects based on five key criteria:
 - Potential impact (25pt),
 - Economic rationale (25pt),
 - Potential for replication or adaptation (25pt),
 - Innovation (12.5pt), and,
 - Other benefits (12.5pt).
- Winners will be announced during a ceremony at the tenth Clean Energy Ministerial (CEM10) in May 2019 in Canada
- Winners will be invited to participate in the ceremony for a certificate & plaque and be recognized in ISGAN products and proceedings over the following months

Pacific Nort

Thank you for your attention!

Questions?

