

EGEDA update

EGEEC56 and EGNRET55 Joint Meeting 11-14 May 2021

Edito BARCELONA, Elvira GELINDON and Nobuhiro SAWAMURA EGEDA Secretariat

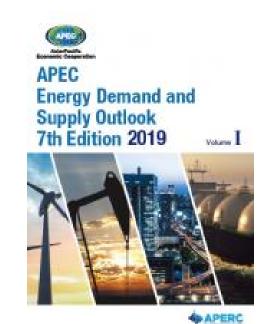
Outline

- ■Regular energy data collection
- Training courses and workshops on energy statistics
- □EGEDA meetings
- Tracking the APEC energy intensity goal
- Tracking the APEC RE doubling goal

1. Regular energy data collection

Annual energy data

- Annual energy supply and demand data of 21 member economies for 2018 have been collected, processed and analysed
 - APEC Energy Statistics 2018 and APEC Energy Handbook
 2018 publications are still undergoing APEC Secretariat review
- Annual energy supply and demand data for 2019 are now being collected
 - All data are expected to be in by September 2021
 - The secretariat will finish the draft APEC Energy Statistics 2019 and APEC Energy Handbook 2019 and submit to the APEC secretariat for review by end of October 2021
 - Hopefully, the 2019 publications are released in January 2022


Other energy data

- Regular **quarterly** and **monthly** data collection continues.
 - Monthly JODI Oil and JODI Gas are submitted one month after the end of the month
 - Quarterly supply data are submitted 4 months after the end of the quarter
- Low response rate on the energy efficiency indicators template, energy prices and CO₂ emissions
 - No available end-use energy consumption (heating, cooling, lighting, etc.) data in many non-IEA member economies
 - The secretariat requests IEA member economies to submit the templates submitted to IEA
 - Not all economies have official CO₂ emissions data

Uses of APEC energy data

- □APEC energy overview
- □APERC is now using APEC data that is produced by EGEDA for the 8th APEC energy outlook
 - Outlook will use petajoules (PJ) instead of million tons of oil equivalent (mtoe)
 - EGEDA also used PJ in data analysis and in the 2018 energy statistics publications
- □APEC energy data is also used to track the progress of APEC aspirational goals

2. Energy statistics trainings/workshops

18th APEC workshop on energy statistics

□Held on 15-17 December 2020

- Focused on renewable energy statistics with the objective of improving data for more accurate tracking of the doubling goal
- A joint training workshop with IRENA
- EGNRET participated

□Agenda

- Overview of renewable energy (sources and technologies)
- Importance of accurate renewable energy data in tracking APEC's renewable energy doubling goal
- APEC's renewable energy road map analysis
- Methodologies for estimating production and consumption of renewable energy in the non-power sector and in off-grid renewable energy installations

19th APEC workshop on energy statistics

- □Schedule: 6-8 July 2021 (online)
 - To discuss the importance of energy efficiency indicators for energy policy analysis and sharing of experiences on end-use energy consumption data collection/estimation
 - A joint training workshop with IEA
 - We would like to invite EGEEC to actively participate

19th APEC workshop on energy statistics

□Agenda

- Energy intensity trends in APEC from 2005 to 2018
- APEC cooperation in energy efficiency
- The energy efficiency indicators template
- APEC energy data and energy balances the need for more data
- The IEA weather database
- Collection/estimation of sectoral energy and activity indicators
- Tracking sectoral energy efficiency (with hands-on exercises)
 - Residential and commercial sectors (buildings)
 - Industrial sector
 - Transport sector
- Development of action plan to track impacts of energy efficiency –
 What to do and how to get the right data

EGEDA's training courses on energy statistics

- All courses were cancelled
 - Short-term: 19-30 October 2020 (2 weeks)
 - Middle-term: 19 October to 11 December 2020 (8 weeks)
 - Special training course for Viet Nam: 28 September to 2 October 2020 (5 days)
- □ The secretariat is considering to hold a one-week course in September 2021

3. EGEDA meetings

31st EGEDA meeting (Joint with EGEEC54)

- □Held on 19-20 November 2020
- □EGEEC and EGEDA agreed to further collaborate in the future on:
 - Organising joint meetings and workshops;
 - Data collection in district cooling/heating systems,
 - End-use energy data;
 - Exploring energy efficiency applications and energy data collection in green data centers

32nd EGEDA meeting

- ■To be hosted by China (online, 19-20 October 2021)
- □Agenda
 - Report on the 18th APEC workshop and directives from EWG
 - Report on energy data collection and energy supply and demand trends by the secretariat
 - Tracking the APEC energy goals
 - Energy efficiency indicators template and training workshop on collection/estimation of end-use energy consumption data
 - Election of EGEDA chair
 - Other matters

4. Progress of APEC energy intensity goal

APEC energy intensity indicator milestones

 To reduce APEC's aggregate energy intensity by 45% percent by 2035.

Honolulu
Declaration 2011

EWG Meetings

 APERC has been reporting progress since EWG41 in 2011. Proposal and approval of the current definition.

EWG53 Meeting

Agreement was reached at EWG53 to analyse final energy consumption intensity (excluding non-energy), using APEC data.

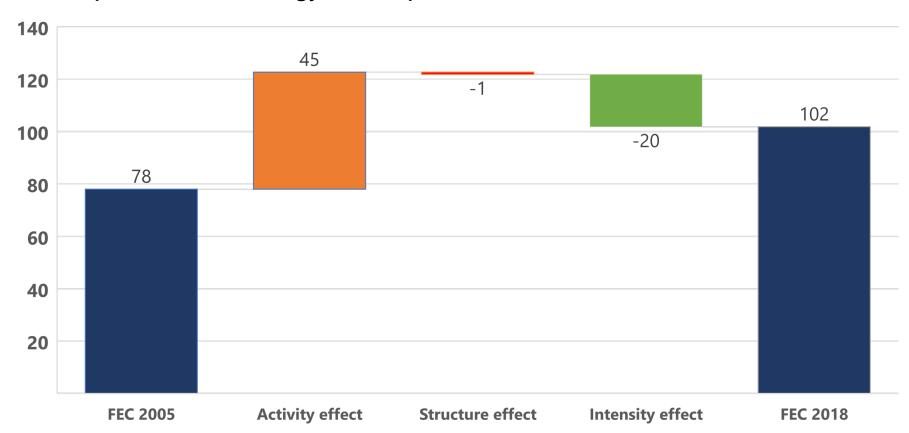
Energy intensity continued to decline in 2018...

Annual change in APEC final energy intensity, 2006-18

	2006	07	08	09	10	11	12	13	14	15	16	17	18	Trend to 2035
Change in final energy consumption	2.4%	2.9%	0.7%	-1.3%	5.5%	4.3%	1.9%	1.5%	1.4%	0.6%	0.4%	1.3%	3.7%	
Change in GDP (PPP, constant 2017 US dollars)	5.4%	5.5%	2.9%	-0.2%	5.7%	4.2%	4.2%	3.8%	3.8%	3.6%	3.4%	4.1%	4.1%	
Change in final energy intensity	-2.8%	-2.5%	-2.2%	-1.1%	-0.1%	0.08%	-2.3%	-2.3%	-2.3%	2.9%	-2.9%	-2.6%	-0.4%	-48.9%

Sources: APEC statistics, WB, DGBAS (CT) and APERC analysis.

- Final energy intensity has been improving reasonably consistently year-on-year, with 0.4% reduction in 2018
- ☐ Final energy intensity fell 21.8% between 2005 and 2018.
- ☐ If the current trend continues, the APEC final energy intensity goal of 45% will be met in 2033;



Decomposition of the change in energy consumption

Analysis

Decomposition: Final energy consumption(PJ), 2005-18

☐ Energy efficiency or intensity effect played a significant role in offsetting the increases in final energy consumption brought about by the rapid growth (activity) of the APEC region

Better data = better analysis

- Note that energy intensity is not the same as energy efficiency. Energy
 intensity is often used as a proxy to analyse energy efficiency improvements in
 an economy.
- To better understand true trends in energy consumption as well as trends in economic activity that influence energy consumption in APEC, decomposition method is recommended. It allows us to separate structural shifts or activity shifts, understanding.
- However, more useful analysis (i.e. analysis by sector) requires more detailed data or disaggregation of end use demand. Decomposition of aggregate intensity is already a challenge.
- For example: Transport (passenger-km travel and number of vehicles)--initially tried with three OECD APEC economies with detailed activity data--and residential (floor area and weather effect), these sectors will be challenging.

5. Progress of APEC RE doubling goal

Renewable share doubling goal milestones

- **1. EWG 47 (May 2014)** US proposed the APEC aspirational goal of doubling the share of renewable energy by 2030 and noted that it interacted with APEC's aspirational energy intensity goal.
- 2. EMM 11 (Sep 2014) "Doubling the share of renewables in the APEC energy mix, including in power generation, from 2010 levels by 2030."
- 3. **EWG 54 (Nov 2017)** EWG decided that traditional biomass will not be counted; IRENA's definition of renewable energy is recommended; APEC data should be used for monitoring progress; and the goal should be monitored on both the supply and demand side.

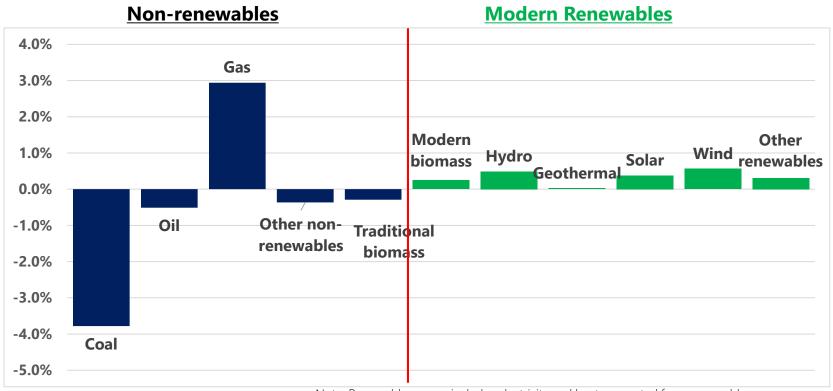
Renewable energy supply and consumption

Primary energy supply, PJ

Final energy consumption, PJ

	2010	2018	% change		2010	2018	% change
Non-renewables	287,578	318,619	10.8%	Non-renewables	164,441	186,329	13.3%
Coal	116,655	118,589	1.7%	Coal	30,630	28,095	-8.3%
Oil	90,630	100,519	10.9%	Oil	65,017	72,873	12.1%
Gas	61,375	79,425	29.4%	Gas	26,187	34,791	32.9%
Other non-renewables	18,917	20,086	6.2%	Electricity	34,553	40,784	18.0%
Traditional biomass	3,551	3,006	-15.4%	Heat	7,839	9,483	21.0%
Modern renewable energy	14,996	23,861	59.1%	Other non-renewables	215	303	40.8%
Modern biomass	4,491	5,919	31.8%	Traditional biomass	3,551	3,006	-15.4%
Hydro	6,396	8,896	39.1%	Modern renewable energy	10,744	17,905	66.7%
Geothermal	1,486	1,753	17.9%	Electricity	6,242	11,595	85.8%
Solar	152	1,490	877.0%	Heat	61	115	88.2%
Wind	586	2,612	346.0%	Modern biomass	2,862	3,268	14.2%
Other renewables	1,885	3,192	69.3%	Other renewables	1,579	2,927	85.4%
Total	306,125	345,486	12.9%	Total	178,736	207,240	15.9%
Modern RE share	4.9%	6.9%	41.0%	Modern RE share	6.0%	8.6%	43.7%

Note: Consumption of electricity and heat from renewables is calculated from the share of total electricity and heat production.

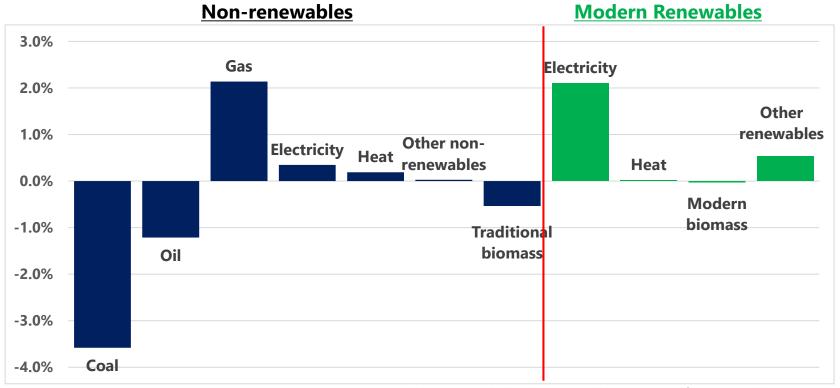

Data of China for 2018 are estimated based on preliminary information.

Source: APEC data.

Coal and other energy lost shares to gas and renewables

Percent change in fuels in primary energy supply market share, 2010-2018

Note: Renewable energy includes electricity and heat generated from renewable energy sources


Source: APEC data

From 2010 to 2018, the renewable share increased 2.0 percentage points, 41% of the way to the goal.

Coal and oil lost shares to electricity from renewables

Percent change in fuels in final energy consumption market share, 2010-2018

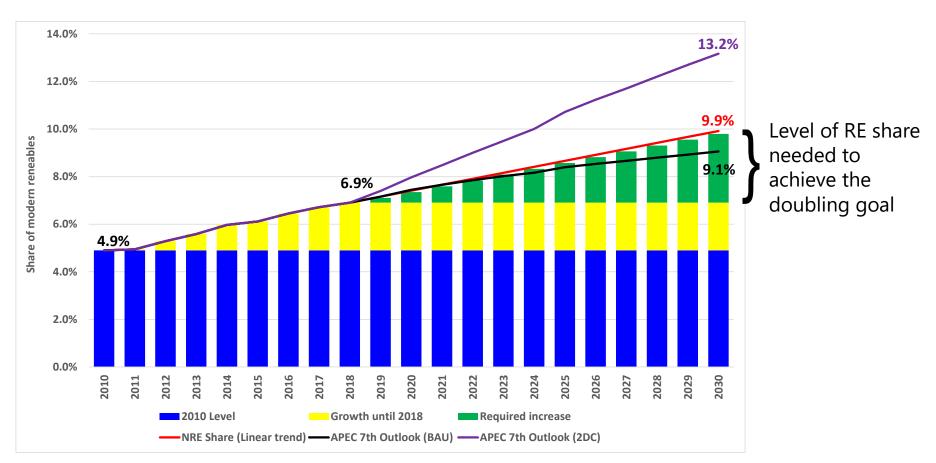
Note: Renewable energy includes electricity and heat generated from renewable energy sources

Source: APEC data.

From 2010 to 2018, the renewable share increased 2.6 percentage points, 44% of the way to the goal.

Renewable energy supply and consumption

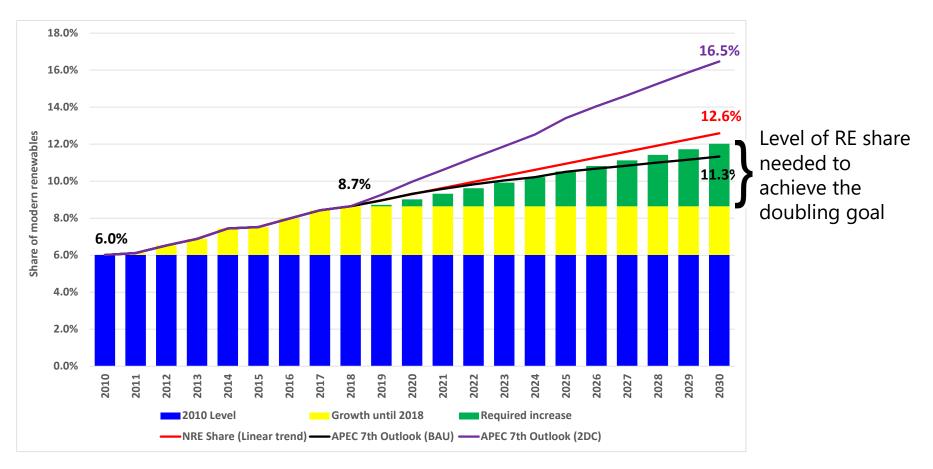
Electricity Generation, TWh


	2010	2018	% change
Non-renewables	11,362	13,289	17.0%
Coal	6,572	7,694	17.1%
Oil	331	210	-36.7%
Gas	2,711	3,587	32.3%
Nuclear	1,658	1,681	1.4%
Other non-renewables	89	117	31.3%
Modern renewable energy	2,120	3,827	80.5%
Modern biomass	73	163	124.4%
Hydro	1,780	2,474	39.0%
Geothermal	53	60	13.5%
Solar	9	367	3972.5%
Wind	163	725	345.9%
Other renewables	43	37	-13.0%
Total	13,482	17,115	27.0%
Modern RE share	15.7%	22.4%	42.2%

Even in electricity generation, for just 40% of the time to 2030, APEC has already increased renewable energy share by 42%

Supply outlook BAU extrapolation fails to meet the goal

Renewable energy share in total primary energy supply, 2010-2030



Source: APEC data and APERC analysis.

Demand outlook BAU extrapolation also fails to meet the goal

Renewable energy share in total final energy demand, 2010-2030

Source: APEC data and APERC analysis.

Closing thoughts

- □ From 2010 to 2018, real progress has been made toward achieving the renewable doubling goal
 - Enabled by rapid decrease in costs and favorable government policies (FIT, RPS, etc.)
- Further increases in the share of VREs will require back-up generation and/or substantial increases in electricity storage to ensure grid stability
 - There are many options, although some are high cost with current technologies
 - An APERC study shows that one option for storage is battery electric vehicles (BEVs)
- We expect the grid stability challenge to be addressed on an economy-by-economy basis and APERC will continue to monitor progress and identify lessons learned over the coming years.

Thank you for your kind attention.

https://aperc.or.jp/

